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13. The transverse (radial) vibrations of geometrically thin circular rings are experimentally and 
analytically investigated in order to further understand the order and degree of 
nonlinearities present. Two important mechanisms have been identified that contribute 
to the quadratic elements of the nonlinear equations of motion. The first results from the 
first order nonlinear strain-displacement relations interacting with the effect of 
circumferential periodicity present in a complete ring which gives rise to a double 
frequency breathing mode. The second mechanism is due to the geometric 
imperfections present in any manufactured structure which can give rise to a double 
frequency flexural mode response. These and other nonlinear mechanisms that 
generate multiple wavenumber responses and interactions among these wavenumbers 
have been identified. The Galerkin's procedure was used to analytically determine the 
differential equations of motion. An experimental study has also been conducted on 
three rings of various thickness to radius ratios. The experimental results question the 
existence of the nonlinear breathing mode response but confirm, at least qualitatively, the 
geometric imperfection flexural mode response. The investigation of these nonlinear 
structural vibrations is enhanced by the use of higher order spectral signal processing, 
such as bicoherency, which preserves phase information and allows the investigation of 
frequency interactions and can indicate the presence of nonlinear system effects. 
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SECTION 1 
INTRODUCTION TO RINGSAND HIGHER ORDER SPECTRA 

1.1      THE CHOICE TO STUDY CIRCULAR RINGS 

In order to fully understand the purpose of this thesis, a brief history of the interest 

and motivation of this study of circular ring vibrations is useful. This research was 

generated as part of the Structural Acoustics Program of the Signal Physics Group at 

Applied Research Laboratories, The University of Texas at Austin. This interest in struc- 
tural vibrations is primarily motivated from the need to understand the radiated noise 
fields of marine structures. The motivating factors for the investigation of circular rings 
are threefold. 

First, circular rings are significant structural members of marine platforms serving 
as stiffeners for the cylindrical shell hull. It is well known that the discontinuities in the 
cylindrical shells created by the ring stiffeners act as local radiation sources to the sound 

field (Ref. 1, pp. 349-369). Ring stiffeners attenuate the wave energy of the cylindrical 
shell by transferring it to vibration energy in the stiffeners. This can be a very efficient 

radiation source, especially at coincidence or trace-matching velocities of the vibration 

waves (Ref. 1, pp. 406-414). Thus, it is important to understand the vibration characteris- 
tics of the ring stiffeners. 

Second, the study of circular rings can aid in the investigation of cylindrical shells 
in that many interesting and significant vibration features of cylindrical shells are present 
in circular rings. Evensen, for example, used shallow shell equations to investigate circu- 
lar ring vibrations (Ref. 2). The present work on rings, indeed, has a historical basis in 

the thesis by O'Donnell on active control of internal sound radiation of cylindrical shells 
(Ref. 3). Many features that will be investigated in this paper for circular rings should 
also be present in the vibrations of cylindrical shells. 

Third, transverse vibrations of circular rings can be fully described using a single 
circumferential coordinate. Thus, the complicating effects of axial and circumferential 

wave interactions present in shells is eliminated, yet, as stated previously, many of the 
interesting features of shell vibration are retained. Also, part of this work includes the 

investigation of geometric imperfection effects. These imperfections can be easily and 

accurately measured since they are approximately one dimensional. The single spatial 



coordinate also simplifies the experimental investigation, and thus the experimentally 

obtained response signatures can be more readily identified. 

The investigation of the nonlinear vibrations of circular rings is also motivated by 

the interest in marine structure sound radiation. As the active control of linear mecha- 

nisms in marine structures progresses, additional second order sources of radiated noise 

which are generated in a nonlinear manner may become more significant. These non- 

linear sources can be significant for three reasons: (1) their relative contribution to the 
total radiated noise field may be larger simply because the linear sources are reduced; 

(2) the active control of linear mechanisms can, in fact, increase the presence of nonlinear 

sources; and (3) recent advances in higher order spectral signal processing have improved 

the ability to identify the nonlinear sources. 

Thus, the importance of the investigation of nonlinear vibrations of circular rings is 
established. Much progress has been made in the literature on the investigation of non- 
linear ring vibrations. The following section will describe some of this previous work 
and the unique contribution that this thesis makes to this subject. 

1.2     PREVIOUS WORK ON NONLINEAR VIBRA TIONS OF CIRCULAR RINGS 

An excellent introduction to the nonlinear vibration of circular cylindrical shells, 

which is related to the study of circular rings, was written by David Evensen and includes 
the progress of the field until 1972 (Ref. 4). This article briefly describes the early work 

of Reissner, who used the shallow shell equation approach (Ref. 4, p. 134, and Ref. 5). 

Reissner's work, however, could not be applied to a complete shell because of the type of 
assumed solution he used (Ref. 4, p. 136). This problem will be discussed in more detail 
during the development of the ring equations of motion for this paper. 

Chu [Ref. 6] furthered the work on shells by allowing for the application of 

Reissner's work to the complete shell. His analysis, however, predicted a hardening type 

of nonlinear behavior for the natural frequencies of vibration (Ref. 4, p. 137, and Ref. 6). 

This did not correctly predict the type of stiffening as Evensen experimentally observed a 

nonlinear softening behavior. This discrepancy between the experimental and analytic 

results led Evensen to the discovery that Chu's (and indeed Reissner's) approximate 

solution would not satisfy the continuity condition in the circumferential displacement of 

a complete shell (Ref. 4, p. 138). 



Wanting to further understand the nonlinear vibration problem of cylindrical shells, 

especially in light of the question of continuity as applied to the type of assumed mode 
solution admitted, Evensen turned his attention to the circular ring. This work was per- 
formed by Evensen at the California Institute of Technology in the mid 1960's (Ref. 2), 
and is probably the most influential work on the nonlinear transverse vibrations of circu- 
lar rings. Since his work was motivated by his investigations of cylindrical shells, the 

equations of motion used as the basis of his analysis are shallow shell equations of 
motion reduced to describe the ring. This approach, which was introduced by Reissner, 

is extremely useful and will be used to some extent in this report. Many of the interesting 

features of nonlinear ring vibrations can be described using these equations as even a 

cursory reading of Evensen's work will reveal. 

Evensen, however, did not investigate the influence of geometric imperfections on 
the nonlinear ring vibrations. This problem was addressed analytically by Liu and 
Arbocz who investigated the geometrically imperfect cylindrical shell along with the 

effects of circumferential and longitudinal stiffeners in a series of reports (Refs. 7-10). 

They did not, however, include an experimental analysis. The absence of experimental 
evidence of the influence of geometric imperfections on the nonlinear vibrations of shells 

of revolution was a motivating factor in the generation of this study. 

There exists much literature on the subject of circular ring vibrations based on 
linear theory. Many of these papers are directed towards the prediction of the ring natural 
frequencies of vibration (Refs. 11-19). The last three references pertain to the problems 
of radially loaded vibrating rings. These papers address such issues as the comparison of 
extensional and inextensional forms of vibration and the effects of rotational inertia and 
tangential shear on the ring vibrational frequencies. Some of their discussions are 
pertinent to the present work and will be referred to when appropriate in the text. 

The analysis of nonlinear vibrations of circular rings has been addressed by a 

number of authors as well (Refs. 2, 4, 20-24). References 20 and 21 are papers by 

Evensen that contain parts of his Doctoral Thesis (Ref. 2). Kovrigin and Potapov 
(Ref. 22) addressed the idea of degenerate mode cases where the bending motion 
becomes unstable and tangential traveling flexural waves are generated. Maganty and 
Bickford (Ref. 23) addressed large amplitude vibrations and include an analysis of the 

coupling between the radial and axial out-of-plane flexural motions. Mack and Yew 
(Ref. 24) use a formulation for the nonlinear equations of motion which follows the 



Goodier and Mclvor (Ref. 25). (As pointed out by Mack and Yew, Goodier and Mclvor 

actually address the ring problem despite the title of their paper.) Mack and Yew present 

to second order the solution of the equations of motion using a perturbation technique. 

Of interest in their paper is the identification of critical thicknesses for which the solution 

form breaks down. Aspects of these papers that contribute to the particular problems that 

the present work addresses will be noted. 

1.3     AN INTRODUCTION TO HIGHER ORDER SPECTRA 

Spectral signal processing has become an indispensable tool for the modern struc- 

tural experimentalist almost since the development of fast Fourier transform (FFT) 

techniques. Most spectral analysis, however, has been limited to the use of the power 

spectrum. Increasingly, though, higher order spectral analysis has developed into an 

extremely useful tool for the identification and analysis of non-Gaussian and nonlinear 

signals. Higher order spectral processing has demonstrated the ability to (1) recover 

phase information from non-Gaussian response signals, (2) determine whether aliasing 

has resulted from undersampling, (3) detect transient signals, (4) characterize the nature 

of the nonlinearity in systems, and (5) recover signal information that is masked by 

Gaussian noise. This section will serve as a brief introduction to higher order spectra 

(HOS), particularly the bispectrum and bicoherence,* and include a brief bibliography on 

HOS applied to mechanical systems. 

The bicoherence (usually referred to as the bispectrum by authors) has had a 

number of applications in the past 30 years. In their review (Ref. 26, p. 871), Nikias and 

Raghuveer list a few of these: oceanography, geophysics, biomedicine, speech process- 

ing, plasma physics, and fluid mechanics. Papers have also been published on the appli- 

cation of HOS to mechanical vibration systems. Included in this are systems involving 

chaotic motion (Ref. 27), laser Doppler vibration measurement (Ref. 28), nonlinear mode 

interactions in a parametrically excited beam (Ref. 29), aeroelastic phenomenon (Refs. 

30-32), nonlinear resonators, human body vibration, and loudspeakers (Ref. 33), drill bit 

incipient fault detection (Ref. 34), and the previously mentioned work on cylindrical 

t The terminology for HOS has not been standardized. The most useful proposal is for the -spectrums to 
refer to the umiormalized cumulant spectrums. The normalized cumulant spectrums are then labeled 
-coherences. Thus, the bispectrum is unnormalized while the bicoherence is normalized. Many authors use 
bispectrum and bicoherence interchangeably; however, this text will use bicoherence strictly for the 
normalized cumulant spectrum. 



Shells (Ref. 3). These demonstrate the applicability of HOS to the analysis of nonlinear 

and parametric mechanical systems. 

Mathematically, HOS can be introduced in terms of the Fourier transform of nth 
order cumulants. However, this author finds it simpler to define HOS within the 

frequency domain. Excellent introductions to HOS, especially the bispectrum, can be 

found in Refs. 3,26, and 35-36. 

To understand HOS, it is helpful to review the development and properties of the 

power spectrum. Given a finite length valued series x(t), the complex finite Fourier 

transform is defined as 

T 

X(f)= Jx(t)e-J2*ftdt   , (1.3.1) 

where j = ^f-T, f is the frequency, and T is the length of the series. In experimental 

signal processing, x(t) is usually a discrete, uniformly sampled signal written as 
x(n) = x[-jT- ]= x[F- j, where N is the number of sampled points in the series and fs is the 

sampling frequency. Thus the Fourier transform will be a discrete Fourier transform: 

1 N-1 

X(fi)=^Xx(n)e-j2rein/N   •    (i = 0,l,...,N-l)   , (1.3.2) 

which is practically calculated using an FFT algorithm. 

The power spectrum is approximated as 

Sx(fi) = E[X(fi)X*(fi)]    , (1.3.3) 

where E[ ] is the expected value function taken over a collection of records and the 
asterisk (*) is the complex conjugate operation. In practice, the expected value represents 
an ensemble average of sections of data called blocks. Note that the power spectrum is a 

magnitude function and that all phase information is suppressed. If x(n) is a real func- 

tion, then Sx (f) is a real, even function. Thus typically the function is folded about the 

zero frequency and displayed using only the positive frequencies. 



The bispectrum is approximated as 

BxxCfi.fp-EtXCÖXCfpjfffi-tfj)]    . d-3.4) 

If the valued series x(n) is real, the principal domain of the bispectrum can be determined 

from the symmetry properties 

Bxx(fl,f2) - BxxCfe.fi) (L3-5a> 

Bxx(fl,f2) = Bxx*(-f l, -fe) (1.3.5b) 

BXx(fl,f2) = B„*(-f2,-fi) (1-3.5C) 

Bxx(fl,-fe) = Bxx* (f 1 - fe, fe) •                                                      (l-3.5d) 

With proper sampling technique, additional practical limitations exist on the region over 

which the bispectrum must be estimated. It is required that f i < fN . fe ^ fJN, and fi + fe 
< fN where f>j is the Nyquist frequency equal to one-half the sampling frequency, fs (i.e., 

fN =\ fs)- Figure 1.3.1 indicates the principal region (also called the support set) for the 
bispectrum. Note that there is an additional (non-shaded) triangular region included in 

this figure. This triangular region, which is limited by two additional symmetries not 

included in Eqs. 1.3.5, is sometimes labeled the outer triangle or forbidden triangle. The 

discretely sampled bispectrum can be expected to have non-zero values in this region 

only if (1) the continuous time process is not band limited or the sample rate is insuffi- 
cient such that aliasing occurs or (2) the time series is nonstationary (Ref. 36, p. 9, and 

Ref. 37). The software used in this paper calculates and plots the outer triangle even 
though neither of the above situations should occur if indeed the signals are stationary 
and the low-pass (anti-aliasing) filters are properly implemented. 
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Figure 1.3.1 
Principal Domain and Outer Triangle of Bispectrum 
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As stated previously, the bispectrum can be used to analyze nonlinear systems. 
Figure 1.3.2 indicates part of the basis for this claim. In this figure, the input to the vari- 
ous systems, Xk, is a deterministic signal composed of M discrete oscillating components 
of frequency com, amplitude am, and phase <t>m. If this signal passes through a linear sys- 
tem, the result will be an output signal, Yk, composed of the same frequencies com but 
modified in amplitude to bm and phase shifted to 6m. These frequency components are 
present (though maybe not detectable due to noise masking) in the power spectrum, 
which indicates the presence of energy at the com frequency. If the same input signal 
passes through a quadratic system, the coupled frequencies com±con will be present in the 

output signal Y2 with a phase of 8m±0n. Since in almost all cases a quadratic system will 
exist in conjunction with a linear co-system, the output of the coupled linear-quadratic 

system will contain the frequency components com, con, and CDm±con, which will be phase 

related by Gm, 0n, and 6m±6n and thus will exhibit a non-zero bispectrum. A similar 
result will be present using the trispectrum and a coupled linear-cubic system and so on 
through the higher orders. Note that the coupled quadratic-linear system will be null for 

the trispectrum and indeed for all higher spectrum. Similarly, the coupled cubic-linear 
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Fig 1.3.2: System Identification through Higher Order Spectra Analysis 
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system will display a null bispectrum and null higher spectrums 4th order or above. 

Thus, a non-zero bispectrum can indicate the presence of a quadratic nonlinearity in a 

system; the trispectrum can indicate the presence of a cubic nonlinearity in a system, and 
soon. 

The bispectrum can be normalized to produce a bicoherence for which asymptotic 
statistics can be easily calculated. Normalizing removes the effects of amplitude depen- 

dence so that the nonlinear nature of systems can be identified, theoretically, regardless of 
the amplitude of the signal inputted to the system. There exist two common ways to 

normalize the bispectrum (Ref. 3, pp. 25-26, and Ref. 38). The Kim and Powers nor- 
malization defines the bicoherence as 

bxx2(fl,f2) = -7- 'Mffi!2 M   , (1-3.6) 
E[lX(f1)X(f2)l2]E[lX(f1+f2)l2] 

while the Haubrich normalization defines the bicoherence as 

u   2rt\ f,\ lBXx(fl,f2)l  n ~ „. 
*" l '■ 2) _ EflXff,)!2] E[lX(f2)P] E[lX(f1+f2)l>]    ' (13-7) 

Notice that the normalizing denominator of the Haubrich bicoherence (Eq. 1.3.7) is the 
product of the power spectrums at the frequencies fi, f2, and fi+f2. 

For narrow band signals, the choice of the normalization does not significantly 
affect the bicoherence estimates as demonstrated by Elgar and Guza (Ref. 38). Both the 

Kim and Powers and the Haubrich normalizations produce consistent estimates bounded 

by 0 < bxx
2(f i,f2) ^ 1 as long as the number of records averaged is greater than 16 for the 

Haubrich bicoherence. On the basis of asymptotic theory and numerical simulations, the 
significance levels for zero bicoherence versus the statistical degrees of freedom (dofs) 

were determined to be independent of the type of normalization used (Ref. 38, p. 1668). 
The degrees of freedom is equal to twice the number of records averaged. In this work, 
the Haubrich bicoherence will be used. 

In using HOS, it has been previously stated that one of their advantages is that they 

are able to detect nonlinear interactions masked by Gaussian noise. This valuable asset of 

HOS is due to the property that ideally all HOS are zero for Gaussian noise. For finite 



length (i.e., practical) signals this nulling of Gaussian noise is true only in the asymptotic 
limit. The significance levels for zero Bicoherence for linear, random phase processes 

(which produce ideally zero HOS) have been calculated by Elgar and Guza as a function 

of degree of freedom (Table 1.3.1). Thus, a 95 percent significance level for zero 

Bicoherence is given by the expression VoWdöfT (Ref. 38, p. 1668). As an example, a 
signal separated into 50 records would have a 95 percent certainty of the presence of a 
significant Bicoherence for all points with bxx

2(fi,f2) > 0.24, recalling that 

bxx
2(fl,f2)£l. 

Table 1.3.1 
Theoretical Significance Levels for Zero Bicoherence 

Zero Bicoherence Percent Theoretical Significant Levels 

99% V 9.2/dofs 

95% V 6.0/dots 

90% V 4.6/dots 

80% V3.2/dofs 

To summarize, significant levels of Bicoherence for a signal will be achieved if: 

i)    Signal components exist at the frequencies f i, f2, and f i+f2, 

ii)    A phase coherence exists between the frequencies fi, f2, and fi+f2, and 

iii)    The Gaussian noise level exists below a certain signal-to-noise ratio such 

that the zero Bicoherence levels of Table 1.3.1 are surpassed. 

Thus, the lack of a phase coherence (or locking) between existing frequency components 

of a signal or too low a signal-to-noise ratio for the number of records available to 

average will result in a practical null Bicoherence. It should be noted that since this is a 

statistical process, the existence of a significant level of bxx
2(fi,f2) does not necessarily 

mean that a nonlinear or parametric system is present since it is statistically possible for 
spurious peaks to appear. Thus, as with all analysis tools, the Bicoherence cannot be 

used without some knowledge of the tool or the system being analyzed. 

The following sections are dedicated to the analysis of nonlinear ring vibrations, 

both analytically and experimentally. Some background for this work has been presented 

10 



in this section. Specifically, the motivation for the study of rings from a naval architec- 
ture point of view and from previous work on rings and shells has been presented. 

Additionally, the HOS tools that will be helpful in understanding the nonlinearities of the 
transverse vibrations have been introduced. Section 2 is devoted to the analysis of ring 
vibrations. Section 3 describes experimental research performed on the subject. 
Section 4 presents some discussions and conclusions concerning this paper's contribu- 

tions to nonlinear ring vibrations as well as areas where future study would be helpful. 

11 
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SECTION 2 
ANALYSIS OF NONLINEAR RING VIBRATIONS 

This section will be devoted to the analysis of the nonlinear equations of motion 
for the transverse vibration of circular rings. Following Evensen (Ref. 2), the equations 

of motion will be developed in subsection 2.1 using the shallow shell equations reduced 

to describe thin ring vibrations. In subsection 2.2, the nonlinear equations of motion will 

be developed using an energy approach (Hamilton's principle) for a twofold purpose: 

(1) the assumptions used in deriving the equations are clearly seen, and (2) a comparison 
with the shallow shell equation approach can be made. 

Once the partial differential equations of motion have been developed, the 
remaining part of this chapter will be used to analyze their nonlinear features. 
Subsection 2.3 will be devoted to the reduction of the partial differential equations of 
motion to ordinary differential equations of motion using a method of weighted residuals 
(Galerkin's procedure). Subsection 2.4 will analyze the results from the Galerkin's 

procedure and discuss some of the important effects, such as the evidence of a 
nonlinearly generated breathing mode and the effects of geometric imperfections. 

2.1      NONLINEAR SHELL EQUATIONS AND THE CIRCULAR RING 

One approach for the derivation of the equations of motion for circular rings is the 
reduction of the shallow shell equations developed for the circular cylindrical shell. This 
approach is the same as that used by Evensen in most of his work (Ref. 2). One form of 
the nonlinear cylindrical shell equations, called the Donnell-Mushtari equations, can be 
written as (Ref. 39) 

9NX   3NXV __ + __x=phü (2Ua) 

9NXV   3NV 

~^T+~äy   phv (2-Ub> 
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d2Mx ä a
2Mxv a2My   a 

3x2 

y 9y 
+ Nxy ax 

3w\ N. 

J  R + q(x,y,t) = phw (2.1.1c) 

where u,v, and w are the axial, tangential, and radial displacements, respectively; x, y, 

and z are the independent axial, tangential, and radial spatial components, respectively; t 
is the dimensional time; the double dots above the displacements represent the second 

derivatives with respect to time; R is the nominal radius of the shell; Msubscripts are the 

various components of the moment resultants; Nsubscripts are the various components of 

the force resultants; and q(x,y,t) is the forcing pressure function, which is assumed to act 

only in the radial direction. See Fig. 2.1.1 for a description of the coordinate system. 

The assumptions that transverse shear stresses are neglected in the force equilibrium 

Eqs. 2.1.1a and 2.1.1b (Ref. 39, p. 23) and that only the first order terms of the Taylor's 
series approximations of the moment and stress resultants are implied. Other 
assumptions may be added depending upon the development of the expressions for the 

stress and moment resultants. 

Figure 2.1.1 
Ring Coordinate System 

AS-94-1145 
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The following assumptions are made to specialize Eqs. 2.1.1a-c to the case of the 
circular ring (Ref. 2): 

• The force-resultants Nx and Nxy are assumed to be zero throughout the ring. 
This is justified since the axial boundary conditions require N^ and Nxy to 

vanish at the axial limits of the ring and there is assumed to be no rapid 
variations in the x-direction for transverse vibrations. 

• The displacements u, v, w; the moment resultants Mx, Mxy, My; and the force 

resultants Nx, Nxy, Ny are taken to be functions of the circumferential 
coordinate y and time, t, only. Thus, all derivatives with respect to x are 
considered equal to zero. 

• The transverse load is also assumed to be a function of y and t only. Thus, 
q(x,y,t) = q(y,t). 

With these assumptions, the shallow shell equations reduce to the following for a 
circular ring: 

Phü = ° (2.1.2a) 

8y   - Phv (2.1.2b) 

"9y2   + 3y (Nyäy"J " R + iM = Ph*   • (2.1.2c) 

The first of these equations indicates that, as expected due to the assumptions used, the 
axial inertia and membrane loads are zero for purely transverse vibrations, and motion in 
the axial direction can be neglected. This first equation will be, henceforth, dropped from 
consideration. 

The force and moment resultants, Ny and My, are defined by the integrals 

h/2 h/2 

Ny=-h/2 ayy{l+i)dz m J2 
a^ dz cn-3a) 
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h/2 h/2 

My=   j  Gyyfl+^zdz«    J   Gyy zdz   . (2.1.3b) 

As similar to the derivation of the strain-displacement relations in Appendix A, the ring is 

considered thin, i.e., I-« 1. This leads to the approximations of Eqs. 2.1.3a-b. 

The nonlinearities investigated in this paper are geometrical in nature and are not 

material. Thus, Hooke's Law is used to relate stresses to strains: 

(Jyy  = —— [eyy + a>exx] » Eeyy    , (2.1.4) 
1-1)2     " JJ 

where the plane stress assumptions have been applied, D2 « 1 and the displacement and 

stress gradients in the axial direction are negligible. 

The nonlinear strain-displacement relations for eyy derived for cylindrical 

coordinates are referenced in Novozhilov (Ref. 40, p. 192). In Appendix A, eyy is 
examined in some detail with initially strain-free geometric imperfections included. The 
result of Appendix A is a similar order strain-displacement relation as that of Liu and 
Arbocz (Ref. 10, p. 10) since it retains all the essential features of the nonlinearities 
addressed by Evensen and the effects of geometric imperfections. The strain- 
displacement relation is repeated from Appendix A (Eq. A.10): 

eyy 
_ 9v     w       ft)2w   l_9y_\    1 fdv/^l     9w chv ,n t _. 
- dy 

+ R " z[ay2 "RayJ+ 2[ayJ 
+ ay ay • v-L:>) 

A note about the geometric imperfections is appropriate here. In writing the 

imperfection shape as w, the imperfection shape is assumed to be adequately expressed in 

terms of its midplane imperfection shape (see Fig. 2.1.2). Thus there are implicit 

assumptions that there are no variations in the imperfection shape through the thickness 
(z-direction) and across the axial width (x-direction) of the ring. For thin rings, this 

would seem to be a reasonable assumption. 
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Centerline 
of Perfect Ring 

Figure 2.1.2 
Geometric imperfection Coordinate System 

AS-94-1146 

By integrating Eqs. 2.1.3a-b using Hooke's Law (Eq. 2.1.4) and the strain displacement 
relations (Eq. 2.1.5), the stress resultants in terms of displacements are obtained: 

Ny = Eh ^v j. w. ,1 /flwy , 9w9w 
5y    R + 2(^yJ +3y 3y (2.1.6a) 

■K4 Eh3 32w   1 3v 
9y2 "R9y (2.1.6b) 

Note that the leading coefficient is lacking the (1-D2) factor that is present in the full shell 
equations. This is due to the assumption of no axial stress axx for the ring that is not 
appropriate for the shell. 

These relations can be substituted into the shallow shell equations (Eq. 2.1.2) to 

obtain the equations of motion completely in terms of the displacements v and w: 
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n,  9   3v   w    1 /3w>2 , 3w 3w      ... 

Eh3[ 
12 

3*w     1 33y " 
9y4 " R 9y3 _ ■ Eh 3y[|_< 

i)v   w    1 /3w\2  3w 3w 
^+R + 2^3yJ+3y 3y_ 

3w 
3yJ 

Eh 
+ R 

3v   w    1 /3w^2  3w 3w 
3y + R + 2[3yJ+3y By + phw = q(y,t)   . 

(2.1.7a) 

(2.1.7b) 

These equations, though not exactly the Donnell-Mushtari equations due to the 

underlined term in Eq. 2.1.7b, may not be accurate for low circumferential wavenumbers 

(see comparison tables in Ref. 39, pp. 41-42). If the approximation that |« 1 is not 
applied to the definitions of the strain-displacement relation (Eq. 2.1.5), it is possible to 
improve the accuracy of the equations of motion. This operation is known as the Sanders' 
correction of the Donnell-Mushtari equations (Ref. 41, p. 72, and Ref. 39, p. 34). Markus 
goes so far as to "term the Sanders' equations as the best first-order equations describing 
the deformations of cylindrical shells " [italics his] (Ref. 41, p. 96). These equations are 
stated below but with the inclusion of the nonlinear and geometric imperfection terms as 

inEqs. 2.1.7. 

PI, 
a 

Eh3y" 
3v   w    1 /3w^2   3w3w      h2 /3v   D32w 
37 + R + 2[3yJ+3y3y+ TIRX^     3y2 = phv (2.1.8a) 

Eh3 /94w   !3M      . _3_. 
12 |^3y4"R3y3j" fcn3y' 

3v   w   1 /~3w^a   3w3w 
3y + R + 2[3yJ + 3y 3y + 

h2 fdv   r)^
2w^ 

12R2^y"*Vj 
3v   w , 1 /3w\Z , 
^v^ + ^r + ^rl^cr   + 

3wl     Eh __  
3y f + R [3y T R """ 2 ^3y 

3w3w       h2 /3v  p32w^ 
ay ay+ Imfoy   3y

2J. + phw = q(y,t) (2.1.8b) 

18 



The underlined terms are the additions to the Donnell-Mushtari equations due to the 
Sanders' improvement. Also, the Sanders' improvement and the Donnell-Mushtari 

equations are generally stated without the nonlinear and geometric imperfection terms. 

The boundary conditions on w and v are obtained from the requirement of 

continuity through the ring for the free ring vibration problem. These are periodic in 
nature: 

w(0,t) = w(2«R,t) ^ (0,t) = ^ (2*R,t) (2.1.9a-b) 

and 

v(0,t) = v(27tR,t) ^(0,t)=|^(27tR,t)   . (2.1.10a-b) 

With the nonlinear equations of motion (Eqs. 2.1.8) and the boundary conditions 
(Eqs. 2.1.9-10), the boundary value problem for the transverse vibrations of complete 
thin circular rings is defined. The equations of motion have been derived in this section 
using the shallow shell approach. This is similar to the approach of Evensen except that 
we have selected the Sanders' modification to the Donnell-Mushtari shallow equations 
rather than the Morley improvement. Sanders' approach involves keeping terms that are 
neglected in the Donnell-Mushtari equations. Specifically the integrals of the force and 

stress resultants are not simplified by the thin ring assumptions. Morley's approach uses 

order of magnitude arguments to simplify the complicated Fliigge's equations (Ref. 42). 
In the present analysis, nonlinear terms have been retained and geometric imperfections 
have been included as suggested by Liu and Arbocz. 

2.2     NONLINEAR RING EQUA TIONS DERIVED FROM AN ENERGY APPROACH 

This subsection will be devoted to the derivation of the nonlinear differential 
equations of motion for the thin circular ring using the energy approach method. The 

energy approach more clearly indicates the various assumptions used in derivation of the 

equations. Appendix A of Evensen's dissertation (Ref. 2, pp. 133-142) is followed except 
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that geometric imperfections are included and the strain-displacement relation is that used 

in the shallow shell equation approach of subsection 2.1 (Eq. 2.1.5). First the expressions 

for strain energy, kinetic energy, and virtual work are derived. Then the calculus of 

variations is used to obtain the necessary variations of these expressions for the 

application of Hamilton's principle. 

2.2.1 Hamilton's Principle 

Hamilton's principle may be stated as (Ref. 43, p. 198-202) 

t2 

J[8(T-V) + 8Wnc]dt    , (2.2.1) 
ti 

where T is the kinetic energy of the system, V is the strain energy of the system, and Wnc 

is the work of the nonconservative forces (including applied forces and damping), and ti 
and t2 are the times at which the configuration of the system is specified. The variational 

calculus is used to determine the variations of T, V, and Wnc (denoted by 8) with respect 
to the spatial coordinates. The first step in the energy approach then is to determine the 
expressions for the strain energy, kinetic energy, and nonconservative work. 

2.2.2 Strain Energy 

The differential strain energy can be written in Cartesian tensor notation as 

dV = 2 0ijeij   , (2.2.2) 

where the dummy subscripts i and j represent summations over the three coordinate 

dimensions. For the radial vibrations of thin rings, the following assumptions can be 

made. First, the stress is assumed to be planar; thus for a thin shell away from points of 
concentrated load, 

GZZ = 0 and Gxz = ayz = 0   . (2.2.3a-b) 
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For the ring, 

axx«0 and oxy«0   , (2.2.4a-b) 

which implies no axial force and no axial shearing forces. Thus the differential strain 
energy reduces to a single term: 

dv=2CTyyeyy • (2.2.5) 

Again, as stated previously, this paper does not deal with material nonlinearities, so 
Hooke's Law may be used to relate stresses to strains (see Eq. 2.1.4) and the differential 
strain energy becomes 

dV=2eyy2 ' (2.2.6) 

The strain-displacement relation with geometric imperfections will be used as 
derived in Appendix A (Eq. A. 10 and Eq. 2.1.5): 

^-ay + R-Rl^-^J+^J+3y-äy-   • (2.2.7) 

The strain energy can now be determined through the integration of Eq. 2.2.6 over the 
thickness of the ring and around the circumference 

E2*R      f 
V = 2 idy    J[%]2(l+f)dz   • (2.2.8) 

-h/2 

Substituting the strain-displacement relation (Eq. 2.2.7) into the above expression yields 

h/2R 
.,2 

(2.2.9) 
g£ 2TCR        r 2 

V'=-j- Jdy    J [ai-z'a2 + a3]  (l+z*)dz'   , 
0       -h/2R 

where ~. -* • w    __    .a2w   dv ai=oX.w    „0_Rdfw   dv l/3w>2   3w9w      A  ,    z ai-^ + R'a2-Ray2-^'«3=2^J + ä7^y-.andz1 = ^. 
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Integrating Eq. 2.2.9 and keeping terms up to second order in z' yields 

m,2rcR 
V = %r J [(ai + a3)2 + k (a2

2 - 2 cq a2 - 2 a2 a3)] dy (2.2.10) 
z  0 

h2 
where k = 12R2' 

To apply Hamilton's principle, the first variation of the strain energy is needed. 

Applying the standard techniques of variational calculus to Eq. 2.2.10 yields 

2JIR 

SV = Eh / { [ai + oc3 - k a2]  8oci + 
0 

[k(a2-ai-a3)]6a2+ (2.2.11) 

[ai + a3 - k a2] 5a3 } dy   , 

where the variations Öoq, 8a2, and 8a3 are taken with respect to v and w, respectively. 

Variations with respect to a particular variable will be denoted with a bar as 

8ailw = the first variation of 8ai with respect to w, etc. 

Using the definitions of ai, a2, and a3) the variations are 

8ailw = ^ 8ailv = |^8v) (2.2.12a-b) 

8CC2IW = R||(8W) 8a2lv = -|^8v) (2.2.13a-b) 

(-,      -^-\ a 
8oc3|w = [!7 + ^^5w)      8a3'v = °   ' (2.2.14a-b) 
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To reduce the derivatives of the variations, it is necessary to integrate by parts as follows: 

2nR 2jtR 

C   d 2nR     (dv Ygd8w)dy = y8w |   - J ^8wdy 
o 0     0    ' 

(2.2.15a) 

2rcR 2rtR 

|Y^8w)dy = Y^(8w)|   - g(8w) |   +     ^ 
o    y o o     0- b 3y2 8wdy (2.2.15b) 

27tR 2JCR 

jYäy<8v)dy = y8v |   - J^8vdy    , 
0      0 

(2.2.15c) 

where y is defined as necessary when Eqs. 2.2.12-14 are substituted into Eq. 2.2.11. 

With the application of Eqs. 2.2.15 on the substitution of Eqs. 2.2.12-14 into 
Eq. 2.2.11, two variations in V are obtained: 

2TCR 

8V|W = Eh jWai+a3-ka2)+kRr-^(a2-ai-a3) 
9y2V 

|[(a1+a3-ta2)[f + f 9w . 9w 
Swdy + 

3w . dw Eh |_(ai+a3-ka2)^ + §*)- kR^(a2-a1-a3) 
2nR 

8w I  + 
0 

Eh [kR(a2-a2-a3)]^(8w) 
2rcR 

I 
0 

(2.2.16a) 
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2jtR 

8V|V = Eh f^ [-(ai+a3)(l+k) + 2ka2] 8v dy 
0 

_     2JIR 
+ Eh [(ai+a3)(l+k) - 2ka2]8v |       . (2.2.16b) 

0 

These expressions (Eqs. 2.2.16a-b) are the variational form of the strain energy and will 
be used in the application of Hamilton's principle. The expressions for kinetic energy and 

virtual work will be developed next. 

2.2.3    Kinetic Energy 

The kinetic energy expression can be simply written for the translational 

components v and w without the kinetic energy of rotation: 

2TER 

T = ^J[(w)2 + (v)2]dy   . (2.2.17) 

The variational form of the kinetic energy is 

2nR 

8T = ph j [w 8w + v 8v] dy   . (2.2.18) 

Note that the variations in the time derivatives of w and v must be reduced. However, 

this must be handled in the full expression of Hamilton's principle since a time integral is 

needed for the application of the integration by parts. 

2.2.4     Virtual Work 

The virtual work of the nonconservative forces reduces to that of the external 
forces for an undamped system. The expression for the external loading (for a ring of 

unit width) is given by 
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2jtR 

6Wnc=   fq(y,t)8wdy (2.2.19) 

where the pressure q(y,t) is applied in the same direction as the positive virtual 
displacement 8w. 

2.2.5    Application of Hamilton's Principle 

All the terms necessary for the application of Hamilton's principle have now been 
determined. The variational expressions for T, V, and Wnc are given by Eqs. 2.2.18, 

2.2.16, and 2.2.19, respectively. When introduced into Eq. 2.2.1, a final integration by 
parts with respect to time must be applied for the kinetic energy terms. Two equations 
representing the variations with respect to w and v are obtained. Applying standard 
techniques of variational calculus, the partial differential equations of motion for v and w 
are determined to be 

Cl8   8v   w ^ 1 /8w^2   äwöw.   h2 /8v   n82w\ 
= phv (2.2.21a) 

I. EhjU^w   233v    I82w 
12   [ay4"_R3y3-R2ay2 

1 
R 

82 1 fByrf] 82(8w8w 
ay2{2^yj|"t"äy2^ay8y 

Eh 8y 
8v   w    1 /8w^2 . 8w 8w 
8yTRT2 

/dw Y    dw dw 
[8yJ    dy~3y 

f 
h2 fdv     82w\" 

12R\8y-K8y2J 

V| 
8w       8w 
8y        8y 

V      =^ J 

Eh T8v   w 
+
T[87

+
R 

+ 

1/8WY,8W8W,   h2 rdv  _,92w\l      ...      .   . ,„„««,v 
2{W)+WW+ mi&-RtyJ + p   = q(y,t) '    (      b) 
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where the underlined terms are the differences between the equations of motion above as 
derived from energy considerations and the equations of motion derived from the 

Sanders' modification to the Donnell-Mushtari shallow shell equations (Eqs. 2.1.8). 

The terms that are single-underlined can be accounted for in Eqs. 2.1.8 if the 
z 
TT « 1 assumption is not applied in the force and moment resultant expressions 

(Eqs. 2.1.3) as indicated. The terms that are double-underlined are small nonlinear terms 

not accounted for in the shallow shell equation approach. The term that is triple- 
underlined is a geometric imperfection term that is not accounted for in the original form 

of the Donnell-Mushtari equations (Eqs. 2.1.1). 

The object of deriving the equations of motion in two manners was twofold: (1) to 

fully understand the application of the shell equations to the ring, and (2) to understand 

the assumptions used in deriving the equations of motion. It is clear from the similarity 

between the two forms of the equations (Eqs. 2.1.8 and 2.2.21) that the Sanders' 
modification of the Donnell-Mushtari equations is valid for the analysis of thin rings. 
Note that the assumption 5"« 1 is used in both derivations. However, the Donnell- 
Mushtari equations alone are not sufficient for the analysis of low circumferential 
wavenumbers. Also, the effects of rotational inertia are ignored in both developments, 
though this point is made clear only in the kinetic energy terms of the energy approach. 

The salient features of a system's dynamic equations of motion are that they are 
adequately accurate for the features that are relevant to the study and that they are not 

overly complicated so as to obscure the study. With this is mind, the equations of motion 
for the circular ring that will be used in the rest of this study are to be a combination of 

the best features of the simpler shallow shell equations and the more exact energy-derived 
equations. 

Thus, returning to the energy-derived equations (Eqs. 2.2.21), the small nonlinear 
terms (double-underlined) will be neglected. The effects of the single-underlined terms 

z 
are linear, but since the^«l assumption is considered valid, these will be neglected. 

Moreover, these terms are not included in the Sanders' equations quoted in Leissa 
(Ref. 39, pp. 32-35) or in Markus (Ref. 41, p. 72). The nonlinear and geometric 

imperfection terms of the equations are unaffected by these single-underlined linear 

terms. Thus, the accuracy of the equations of motion would not seem to be unduly 

compromised if these terms are neglected. The triple-underlined term is due to geometric 
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imperfections and therefore may be important to understanding their effects. Thus, this 
term will also be kept. 

To summarize then, the Sanders' modification of the Donnell-Mushtari equations 
reduced to apply to a circular ring will be used. These equations are augmented in that 

the first order geometric imperfection terms are included. These equations are stated 
below along with the boundary conditions. 

2.2.6    Equations of Motion 

Eh^- 3y 
3v    w    lfdw>2   9wdw      h2 fdv   nd2w\ 
ay + R + 2^J+aydy+I^^-RäyTj_ = phv (2.2.22a) 

Eh3 
12 

\d*vr   I93vl     ™  9 < 
ay4-Ray3J " fcn5y" 

dv , w    1 /9w>2 , 3w 3w 

\] 
h2 fdv     32w\][9w   3w]l   Eh[3v   w 

Tä^ay'^JRay + dy)\ + R [ay + R + 

I /^w>2   9w 3w     h2 fdv   nd2w\ 
2^J + ^y"ay+i2R2(dy"RäyTj + phw = q(y,t)   .      (2.2.22b) 

2.2.7    Boundary Conditions 

w(0,t) = w(27tR,t) |(0,t)=|(2,R,t) 

9y3 9y3 
g(0,t)=g(2TCR,t)      §(ftO.§W 

v(0,t) = v(27tR,t) |(0.t) = |(27cR,t) 

(2.2.23a-b) 

(2.2.23c-d) 

(2.2.24a-b) 
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2.3     GALERKIN'S PROCEDURE APPLIED TO THE RING EQUA TIONS 

In order to use the Galerkin procedure, admissible functions must be selected. 

Admissible functions are approximations to the deflection that must satisfy the geometric 

boundary conditions (Ref. 44, pp. 338-9). A general form for the radial deflection of the 

circular ring that satisfies the radial deflection boundary conditions may be written as 

oo 

w(y,t) = X [A„(t)co^+B„(.)Sto^J   , (2-3.1) 

where An and E^ are periodic functions in time with period T such that An(t) = An(t+T) 

and similarly for Bn. The functions co/^j and sinff) correspond to the nth linear 

vibration mode of the ring. Note that n=Ö corresponds to a breathing mode, n=l 

corresponds to a rigid body mode, and n>2 are flexural modes (Appendix B contains brief 

descriptions and diagrams of the various mode shapes n = 0 to 5). Though the radial 

deflection boundary condition is satisfied by Eq. 2.3.1, it must be remembered that the 

tangential deflection boundary condition must also be satisfied. 

In order to reduce all the partial derivatives in the equations of motion, a static 
deflection shape must also be defined for the geometric imperfections. The shape 

function can be written as an infinite Fourier series: 

oo 

w(y,t)=X [onCos(f + <|)nj   , (2.3.2) 

where 8n and tya are the amplitude and spatial phase with respect to some fixed zero 
degree point of the nth component of the imperfection shape, respectively. The 

imperfection shape is flexural in nature, so the n=0 and n=l components are not included. 
Important to the imperfections is that they are static and thus 8n is not a function of time. 

Using these forms (Eqs. 2.3.1-2) of the admissible function for w and the shape of 

w, the partial differential equations (PDE) of motion can be reduced to ordinary 

differential equations (ODE) of motion. 
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In solving the equations of motion, it is often argued that the ring will vibrate in its 
lower modes in an inextensional manner; i.e., the mid-surface of the ring undergoes no 
stretching. A number of authors have investigated the importance of extension in the 
vibrations of circular rings and have produced varying criteria in the circumferential 
wavenumber, n, and the driving frequency, co, for the proper application of the 

inextensional assumption. 

One class of criteria relates the inextensional assumption to the natural frequency 
of the breathing mode, which can be written as (Ref. 12, p. 440) 

<*> - VJ • (23-3) 

where the subscript of coo corresponds to n=0, the breathing mode. Note that this 
frequency is not a function of the thickness of the ring. Evensen (Ref. 2, p. 43) 
determined that if the frequency of vibration, co, is such that 

COn 
co«-y    , (2.3.4a) 

then the bending vibrations are basically inextensional. Philipson's (Ref. 45, p. 366) 
condition is similar, but without the«, i.e., 

co« coo   . (2.3.4b) 

These criteria, in essence, indicate that if the frequency of forced vibration is much less 
than the frequency of vibration of the lowest extensional mode of vibration, then the 
vibrations will be inextensional. 

A second approach for the inextensional assumption involves the relative 
magnitudes of the wavelengths of the modes and the thickness of the ring. Goodier and 
Mclvor (Ref. 25), for instance, indicate that for inextensional vibrations 

n2h2 

1^2<<!   ' (2-3-5) 
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or that the wavelengths of the modes considered must be large compared with the ring 

thickness. 

For higher excitation frequencies (smaller wavelengths), the ring will vibrate in an 

extensional manner where stretching of the midplane does occur. As indicated by 

Evensen (Ref. 2, pp. 103-4), the inextensional modes of vibration used by Goodier and 

Mclvor must satisfy a linear strain-displacement relation, not a nonlinear relation as 
considered in the present work. Thus, this criterion (Eq. 2.3.5) does not apply for this 
paper and Evensen's criterion (Eq. 2.3.4a), the most conservative of Evensen's and 

Philipson's, will be used for the inextensional criteria of this paper. 

For inextensional vibrations, the working assumption is that the circumferential 

strain along the midplane (z=0) must be zero. Thus, from Eq. 2.2.7 

l       _ ^Y.   w    1 fdw 
% ' z=0 - 3y + R + 2 (dy 

>2   3w 3w 
J + 3y~3y 0 (2.3.6) 

Using Eqs. 2.3.1-2, the derivative of v with respect to y may be solved for 

8v   _   w     1 (dv/XL   9w3w 
dy   ~ ' R ' 2[dy J ' dy dy (2.3.7a) 

oo 

= -E[^cos(f)+M^ ny_\ 

U 
"2 

X [nMisin^.nM)cos^|   x 

g [m¥ö^)-E^öc08^1 
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oo 

X [a¥a-^)-a¥a«-^j * 
oo 

§ [**0H (2.3.7b) 

This equation may be separated into two parts, one which is a function of time only, gi(t), 
and the other which is a function both of time and y, g2(y,t): 

^ = - gl(t) - g2(y,t)   • (2.3.7c) 

By expanding the summations of 2.3.7b and using various trigonometic identities 

oo 

gl(t) = ^jjP + \ X t> [An2*1) + Bn2(t) + 2Sto(An(t)co8*ll-Bn(t)siii^)](2.3.8a) R      4 ~ R2 n=l xv 

and 

oo 

g2(0 = X g[An(t) cos^V B„(t) sinf^j 

3 X p[(B2n(0 - A„2(t)) cos^j- 2An(t) Bn(t) sin^ ^nrj 

oo 

\ X p Sta [An(t) cos^ + <j>n V Bn(t) sinf^ + <(>n J 

oo    oo 

i £ E f [(Bn(t)Bm(t) - A„(t)Am(t)) cos(^ 
n5*m 

+ (BndJBmCD + AnWAmCOjcos^ln 
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(An(t)Bm(t) + Am(t)Bn(t)) sin^^) 

(Am(t)Bn(t) - A„(t)Bm(t)) sin^j^j + 

oo    oo 

| X £ f «-{Arf)[c«^ + ♦-)• cos(Ö2^ + ♦.) 2a 

B„(t) [sin^ + *m)+ sin^f* + *mJ (2.3.8b) 

where it can be seen that g2(y,t) is periodic in y such that g2(0,t) = g2(2icR,t). This form 

for |^ satisfies the slope continuity condition (i.e., ^(y=0) = g^(y=2nR)). Direct 

integration of Eq. 2.3.7c with respect to y yields 

v = go(t) - gi(t) y - g3(y.t)   , (23-9) 

which cannot satisfy the displacement continuity criterion unless gi(t) is identically zero. 
(Note that the integral of the function g2(y,t), which contains only linear periodic terms, 

is also a periodic function). Thus, 

gl(t)=0 (2.3.10a) 

or 
oo 

^jP + \ X {£ [An2(0 + Bn2(t) + 25n(A„(t)cos(t)„ - Bn(t)sin<|)n)] = 0    . 
n=l  K 

(2.3.10b) 

Solving for A0 yields 

A0 = -^X ^[An2(t) + Bn2(t) + 28n(An(t)coS(l)n-Bn(t)sin(t)n)]   .       (2.3.11) 
n=l 
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Thus, the inextensional form for the assumed mode shape is 

oo 

<y.t) = X [An(t)cos^VBn(t)sii/^| - 

oo 

1 X"1 n2 

4 2^ R- [An
2(t) + Bn

2(t) + 28n(An(t)cos<|)n - Bn(t)sin<t>n)] (2.3.12) 

Using the inextensional assumption (Eq. 2.3.6), the partial differential equations of 
motion are reduced to 

8 r h2 /3v     fa\ 
^Miä^r^äy2";. = phv (2.3.13a) 

Eh3Ja4w   ljßv   j_il 
12 [ay4-Ray3 -R23y I 8v  -,92w\[3w   3w 

3y"Kay2j^y+ayJ 

^"Vlrp    q(y,t) (2.3.13b) 

Before substituting the assumed deflection and geometric imperfecton shapes, 
tangential inertia will be neglected. This assumption (ph v = 0) is much less limiting than 
that of the inextensional assumption. Evensen (Ref. 2, p. 30) has shown that this 
approximation is valid for 

co2 « n2coo2 
(2.3.14) 

where, again, co0 is the natural frequency of the breathing mode. A comparison of this 
criterion with Evensen's inextensional criterion (Eq. 2.3.4a) shows that if the inexten- 
sional assumption is valid, then the neglecting of tangential inertia is certainly justifiable. 

If tangential inertia is neglected, Eq. 2.3.13a reduces to 

EhayLi2R2\ay"Ray2j 
= phv = 0 (2.3.15) 
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which can only be satisfied if 

d 
5y" \dy    By2). 

= 0 (2.3.16a) 

or 

(|-R^)=fn«(«) (2.3.16b) 

dw 
As shown earlier, the tangential displacement boundary condition requires that ^- 

must not contain terms that are functions of time only. Since all of the terms of ^ 

periodic functions of y, it is easily seen that fnct(t) = 0 in Eq. 2.3.16b and thus, 

rdw  „d* (!-RP)=° (2.3.17) 

Thus, with the inextensional vibration assumption and the neglecting of tangential 
inertia, the dynamic response of the transverse vibrations of circular rings reduces to a 

single partial differential equation of motion: 

Eh3ra4w iaV| ^ ...    , A (2.3.18) 

9v 
This equation can be written entirely in terms of w using the solution for ^- from the 

inextentional result (Eq. 2.3.7a): 

Eh3 
12 

34w    Id2 

9y4+Ray2 
w    1 /dw\2 3w3w 
R^2^yJ Tay 3yJ ' + phw = q(y,t) (2.3.19) 

Along with the inextensional assumption and the neglection of tangential inertia, 
additional assumptions used in the derivation of this equation should be restated. The 
circular ring is considered to be thin such that^-« 1. Shearing strains and rotary inertia 
have been neglected. Evensen has shown that shearing and rotary inertia effects can be 

neglected if 
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gf«l   , (2.3.20) 

which is even less restrictive than that for tangential inertia of thin rings. Thus, the 
assumption of inextensionality is the most limiting of the assumptions used in the 

derivation of this partial differential equation of motion. 

An ordinary differential equation of motion can now be derived from this partial 

differential equation (Eq. 2.3.18) using the assumed mode shape for the inextensional 

case (Eq. 2.3.12) and the solution for ^ (Eq. 2.3.7c): 

Eh3 
12 

oo 

X ^[An(t)co^+Bn(t)sinrf| + ^[g2(y,t)] 

oo 

ph X JÄn(t) cosT^W Bn(t) sinf^V ^ [A„2(t) + An(t)Än(t) + 

Bn
2(t) + Bn(t)Bn(t)-8n(Än(t)cos(t)„-Bn(t)sin(t)n)]} = q(y,t)   ,        (2.3.21) 

where g2(y,t) is defined as in Eq. 2.3.8b. Note that this is an equation of motion that 
defines the dynamic amplitude functions An(t) and Bn(t). The solutions of these 
functions must then be substituted into the assumed displacement solution for w(y,t) 

(Eq. 2.3.12) to determine the actual transverse motion of the circular ring. 

An analysis of the forcing function q(y,t) allows the further simplification of 
Eq. 2.3.21. Experimentally (see Section 3) the ring will be excited at a single point. 

Thus, the forcing function can be written as 

q(y,t) = 5k(y0)q(t)   , (2.3.22) 

where ^(yo) is the Dirac delta function which describes a spatial impulse applied at the 
circumferential location yo, and q(t) is the time amplitude function of this spatial input. 

Without loss of generality, the point of application of the force will be defined as yo = 0. 
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Examining the linear terms of the dynamic equation of motion (Eq. 2.3.21) shows 

that An(t) is directly excited by this point input force since y = 0 is an anti-node of the 
cosine modal components. In the absence of geometric imperfections, Bn(t), however, is 

not linearly excited since the input will lie at a node of the sine modes. Thus An(t) has 

been labeled the ampltiude of the nth driven mode of the solution while Bn(t) is the 

amplitude of the nth companion mode (Ref. 21, p. 556). By examining the nonlinear 

function g2(y,t), it can be shown that the companion mode can be indirectly excited 

through the nonlinear interactions since Bn(t) multiplies terms such as cosf—p—^land 

cofgzy {    ] 

Evensen has performed a detailed analysis of the excitation of the companion 

modes. He has determined that the companion modes will have nonzero amplitudes only 

in a small region surrounding natural frequencies of vibrations. In non-dimensional 
notation, the regions of instabiliy where the companion modes are excited are bounded by 

(Ref. 21, p. 555): 

2 2 
1 -^- + 0[e2] < Q < 1 +^- + 0[e2]    , (2.3.23) 

and coM is the linear natural frequency defined by Evensen (Ref. 21, p. 554) as 

where e = ^J    an = ^       Q 

2 = JE_(n2-l)2/h 
V    pR2     12     (R 

If the amplitudes of excitation are less than the thickness of the ring, then the regions of 
companion mode excitation will be extremely narrow regions about the natural 
frequencies of flexural ring vibration. Thus, except for rather limited types of excitation, 
the transverse vibrations may be defined entirely in terms of the driven modes, and Bn(t) 
can be set to zero for all n. 
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2.3.1    Assumed Mode Shape and Dynamic Amplitude Function 

Thus the assumed mode shape and the dynamic amplitude function for the analysis 
of nonlinear transverse ring vibrations with geometric imperfections accounted for are 

finally established. For inextensional vibrations where only the driven modes are 
considered, the dynamic deflection shape can be described, referring to Eq. 2.3.12, by 

oo 

w(y,t) = X [An(t)cos^y^(An2(t) + 25„An(t)cos(|)n)]   . (2.3.24) 

The dynamic amplitude functions An(t) are then defined by 

Eh£ 
12 

oo 

X^[An(t)cos(f| + ^[g2M(y,t)]    + 

oo 

ph X [Än(t)cosT^y ^ (An2(t) + An(t)Än(t) - 8nÄn(t)C0S<|)n)] 

= q(y,t)   , (2.3.25) 

where 

oo 

g2M(y,0 = Z   [i An(t) COS^f) - ^ An2(t) COS^J 

2 i ^2 8n [ An(t) cosf^ + <|>n j 

oo    oo 

lES^A^OA^fco^-co^j 
n*m 

oo   oo 

^ES^A^co^^-cos^^ 
n*m 
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(2.3.26) 

Carrying out the differentiation of Equation 2.3.25 yields 

Eh3 
12 

oo 

X|f[An(t)cos(fj-g2M(y,t) 

oo 

ph X [Än(t)cos(fy ^ (Än2(t) + A„(t)Än(t) - 5nÄn(t)cos(l)n)] 

q(y,t)   , (2.3.27) 

where 

oo 

g2M(y,t) = X [£ A„(t) cos^) - £ A„2(t) oos^ Ä 

oo 

2Xp8n[An(t)cos^ + (t)„j 

oo    oo 

E 2 % An(.)Am(,) [(mVcos^)- (m+n)2cos^ 
(m+n)yV 

mtm 

oo    oo 

X 2 ^ ^AnCt) [(m-n)2cos(^ + d»m 

n*m 

(m+n)2Cos(^ + <|>mj (2.3.28) 

These equations define the dynamic, ordinary differential equation of motion. These 

equations will be used throughout the remaining portions of this section to analyze 

nonlinear ring motion. 
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However, the dependence on the spatial variable is still present. The Galerkin's 

procedure, which is a particular method of weighted residuals, eliminates the spatial 
dependence by integrating a weighted product of the ordinary differential equation of 

motion over the spatial domain. The weighting function used in the Galerkin's procedure 
is of the same form as the assumed spatial mode (Eq. 2.3.24).   To eliminate the 

ow 
dimensionality of this spatial mode, the weighted function used is of the former, where 

Ai is the ith element of the assumed mode shape taken from the same domain as the 

number of assumed modes used in solving the problem.  To more clearly explain the use 

of Galerkin's procedure, the solution for a single mode will be shown in detail. 

2.3.2    Solution for Single Mode 

As described, the Galerkin's procedure is used to reduce the spatially dependent 
equation of motion to a time only dependent equation. An example of the application of 

Galerkin's procedure to the circular ring will be developed for vibrations limited to a 

single mode, m,m*0. For a single mode, the assumed mode shape is (referring to 

Eq. 2.3.24) 

w(y,t) = [Am cos^V 5g (Am2 + 2omAmcos<|>m)]   . (2.3.29) 

It will be implied that for the rest of this discourse, the dynamic amplitude function is a 

function of time, Am = Am(t). The dynamic amplitude function Am is defined by the 

ODE (see Eq. 2.3.27): 

Eh3["m4-m2. flny\ , m4 A   9 __j2my\ , 
~VT rvTAmC0\R j+ R5 Am co\ R J+ 

2 j*j 6m Am cos^JP + <fo J + ph [ Anpos^- 

5£ (Am
2 + AmÄm - 5mÄmcos<i>m)] = q(y,t)    . (2.3.30) 

To remove the spatial variable y from the above equations, Galerkin's procedure 

uses a weighting function of the form: 
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Galerkin weighting function = ^     , (2.3.31) 

where the domain of the weighting function is the same as that for the assumed solution. 

Thus, for a single mode assumption, / = m and 

3w fmy\    m2 
= cos 8A, m 

(fj-ltAn^cosV)   . (2.3.32) 

This choice of the weighting function maintains the equivalence of the Galerkin's 

procedure to the energy method which culminates in Lagrange's equations. Evensen has 

shown the equivalence of these two methods (Ref. 2, pp. 20-22). Singer (Ref. 46) has 

shown that this equivalence is dependent on the requirement that the original form of the 

differential equations must be used rather than a derivative as the Donnell shallow shell 

equation is frequently presented (see for instance Morley, Ref. 42). Since the original 

form of the ring equations is used in this paper, the equivalence of Galerkin's procedure 

to the energy method is guaranteed. 

This weighting function is multiplied by Eq. 2.3.30 and the result is integrated over 

the spatial extent of the system: 

2JTR 

^Y~ (Ea. 2.3.30) dv => ODE (function of time only)   . (2.3.33) 
Mil 

0 
/ 

4TT- (EQ- 2-3-30) dy => 0DE (function of time only) OAm 

Taking proper account of the orthogonality conditions on cosines that result from this 
circular integration, the resulting ordinary differential equation for the dynamic amplitude 

is 

Eh3 /m4-m2 A   \ 
12 [  R4    AmJ+ 

ph I Äm + jjp V^m2 + ÄmAm" 8mÄmCOS<t>m)(Am + 5mCOS(|)m)J 

+ ^(Am + 5mCOS^m)Q0(t) = Öf1    , (2-3.34) 
27cR2 TCR 

where, if q(y,t) = S^yo) q(t) as mentioned above (Eq. 2.3.22), 
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2rcR 
Qo(t) =   Jq(y,t)dy=q(t) (2.3.35) 

0 

and 

2rcR 

Qm(t) =  J" q(y,t) co^y = q(t) cos^)    . (2.3.36) 

Again, the complete solution must include the assumed mode solution (Eq. 2.3.29): 

w(y,t) = I Amcos[m^j-^(Am
2 + 28mAmcos(t)m)j    . 

It should be noted here that the selection of the mode, m, for the assumed solution 
is not an arbitrary choice. Since the spatial form of the input is a Dirac delta function, all 
spatial modes of the ring can be excited as shown in Eq. 2.3.36. In this equation Qm(t) is 
never zero strictly based on the spatial integration. However, as with all structures, the 

circular ring will respond with a mode shape m, which corresponds to the mode with a 

natural frequency that lies closest to the excitation frequency. This is most obvious in the 
case of resonance for which the frequency of excitation is exactly the same as the natural 

frequency of a particular mode. If the frequency of excitation lies between two natural 
frequencies, then both modes can potentially be excited in varying amplitudes depending 
upon the frequency response function of the structure. In this paper, though, it is 
assumed that the frequency of excitation is such that only one linear mode is excited for 
each freqency component in the input. Thus, an input frequency dominated by the 
frequency f i will produce a ring response dominated by the mode m that has a natural 
frequency that lies closest to fi. (See specifically the discussion by Evensen, Ref. 2, 

pp. 91-93.) 

2.3.3    Solution for Two Independent Modes 

If a two-mode solution is assumed in which the two modes are independent of each 
other, the assumed solution becomes 
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w(y,t) = TAm cos^V ^ (Am
2 + 28mAmcos<|>m)J + 

rAncosr^y^(An
2 + 28nAncos(t)n)|    , (2.3.37) 

where m and n are the independent wavenumber components of the solution.   The 

defining ODE for the dynamic amplitude functions Am and An becomes 

IT [If AmCO^+ ^ Ancos^y Un] + 

ph|Ämcosr^+ÄnCOsr^y\)/m-Vnl   , (2.3.38) 

where 

Cmn = [|f An cos(f)+ ^ Am cos^ j 

-pAn
2cos^-^Am

2cos(^ 

- 2 p8n An cosf-^ + fa\- 2 ™j8m Am cosf-jp + tym\ 

1 mn 
+ 2 

+ 2 

(m+n)y^ ™f AnAm I (m-n)2COSTR 
yl~ (m+n)2 cosp^ 1 

and 

2 R? 8mAn [(m-n)2 cosA9™ + faX (m+n)2 cosf(m
R

n)y + <|>m j 

\ f 8„Am[(m-n)2cos^ - «*)- (m+n)2cos^f* + <|>n J   (2.3.39) 

'2 
\(/i = 2R (Äi2 + AJÄJ - 8iÄiC0S(|)i)    ; i = m, n (2.3.40) 
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Following through with the Galerkin's procedure results in two spatial integrations 

about two weighting functions: 

2TIR 

f ü*r" (Eq-2*3,38 )dy => 0DE (function of time only^ 
0 

(2.3.41a) 

and 

2nR 

f |^- (Eq. 2.3.38 ) dy => ODE (function of time only)   . 
0 

(2.3.41b) 

Carrying out these integrations yields two coupled nonlinear ODEs: 

Eh3 /<m4-m2 A   -\ 
12 [  R4    AmJ+ 

ph |^Äm + |p VAm2 + ÄmAm - 5mÄmCOS(l)m)(Am + 8mCOS(])m) 

+   2R2 VÄn
2 + ÄnAn-5nÄnCOS(|)n>)(

Am + 8mCOS(l)m)J 

+ ^ (Am + 8mcos(l)m) Qo(t) = Quj&     , (2.3.42a) 

and 

Eh3 fn4-n2 A >t 
12 [ R4   AnJ+ 

ph [An + ^2 \An2 + ÄnAn" 8nÄncos<|>n )(An + 5nCOS())n) 

+  2R2 VÄm
2+ÄmAm-8mÄmcos(l)my)(An + 5ncos(t)n)J 

+ 2^R2(A„ + ^os*n)Q„(,) = ^    . (2.3.42b) 
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If q(y,t) = &(y0) q(t) as previously assumed, then the functions Qo(t), Qm(t), and Qn(t) 

are defined as 

2JCR 

Qo(t) =   Jq(y,0dy=q(t)   , (2-3.43) 
0 

2rcR 

Qroft) =  / q(y,0 co^)iy = q(t) cos(f>)   , (2.3.44) 

and 

2JIR 

Qn(t) = j q(y,t) co^y = q(t) cos(f>)   . (2.3.45) 

As described following the discussion of the single assumed mode response, the 
choice of the response modes, m and n, is not arbitrary. If, for instance, the input is 
composed of a single driving frequency component, then the m mode, say, will 
correspond to the mode with the natural frequency closest to the driving frequency. The 

same will be true for the second mode driven by a second frequency. 

2.4     DISCUSSION OF SIGNIFICANT RESULTS FROM EQUATIONS OF MOTION 

2.4.1    Single Mode Solution 

Since a single spatial mode, m, is assumed, the flexural part of the solution 

contains only this single mode. Note that the dynamic ODE (Eq. 2.3.28) contains 

cosf-^Verms which are integrated to zero in the application of the method of weighted 
residuals (i.e., Galerkin's procedure). The time domain part of this flexural mode solution 
is derived from the dynamic amplitude ODE (Eq. 2.3.32) and thus will contain the 
transferred frequencies from the input function. If the geometric imperfections are 
neglected, the ODE contains linear terms proportional to Am and cubic terms 
proportional to ^2\Äm

2+ ÄmAm/)Am. Thus, if small amplitudes of motion are 

considered and the input signal contains a single frequency co, then the flexural waves 

will vibrate primarily at a frequency of co and to a lesser extent at a frequency of 3co. 
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The flexural mode solution also contains the contributions of the geometric 

imperfections. The dynamic solution corresponding to the wavenumber m will contain 

quadratic terms proportional to ^8n,cos<|>mAm
2. Only the imperfection form 

corresponding to the wavenumber m participates in the dynamic solution as all other 

components are not included in the single mode solution form. Thus, the geometric 

imperfections introduce a double frequency component, 2co, of the flexural solution. 

The double frequency component of the response, in addition to containing the 

geometric imperfection flexural wavenumber, also contains the breathing mode 
m       i 

proportional to Tr^Am2.   Thus, two wavenumbers are present in the nonlinearly 

generated double frequency solution, the flexural wavenumber, m, and the breathing 

mode wavenumber, zero. 

The single frequency 2co is composed of two distinct modes of vibration. To 

clarify, Table 2.4.1 indicates the type of frequency and wavenumber solutions expected in 

the single mode vibration. The terms that contribute to the various components have 

been nondimensionalized with 

^m 
_ Am       JJ 6m 

X = co0t (2.4.1) 

Note the two types of double frequency or quadratic response.* 

Table 2.4.1 
Wavenumber and Frequency Responses, Single Mode 

<Freguency 
CO 

2 co 

2 co 

3 co 

.Amplitude Proportionality 

*m 

4   W   m 

m' Wim r#i m 
at» »m 

Wave 
m 

m 

m 

Response 
Linear Response 

Geometric Imperfection 

Breathing Mode 

Cubic Flexural 

t This list of possible wavenumber and frequency responses is not comprehensible since 
the parametric excitation terms are not included and all of the linear terms have not been 
included. 
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Though not fully investigated in this paper, the ring equations also exhibit 

parametric excitation features with the Qo(t) term (Eq. 2.3.35). This parametric 

excitation force is nonlinear, though not quadratic or cubic in nature. 

2.4.2    Two Mode Solution 

The two mode solution contains all of the mechanisms exhibited in the single mode 

solution. In particular the double frequency flexural mode response due to the 
imperfections is present as is the double frequency breathing mode response. However, 
the expression becomes more complicated since the modes are developed from two 

coupled differential equations. 

Table 2.4.2 contains the two mode results comparable to the single mode solution 

except that the cubic terms have not been shown due to their complexity. In Table 2.4.2, 

com indicates the input frequency that falls closest to the natural frequency of the mth 
wavenumber, and 0)n is the input frequency that is closest to the nth wavenumber natural 

frequency. Note that the expressions for the geometric imperfection terms become quite 
complicated in that both the m and n wavenumbers contain the cos<|)m and cos<])n functions 
as well as the dynamic amplitude functions Am and An. Thus, the location of the input to 
both the m and n geometric imperfection waveshapes will influence the double frequency 
response. Also, the breathing mode response can occur at two frequencies. This two 
mode solution begins to indicate the types of nonlinear wavenumber interactions that can 

occur in the nonlinear ring vibrations. 

One interesting example of a two mode solution occurs when the input to the 

system comes from a quadraticaÜy nonlinear source so that con = 2 com. Thus, Table 2.4.2 

indicates that at the 0)n = 2 com frequency, a linear response at the n wavenumber, a 

geometric imperfection response at the m wavenumber, and a breathing mode 

mechanisms can all occur. Thus, three distinct wavenumbers produced by three different 

sources (linear, geometric imperfections, and the geometric nonlinearities) can occur 
simultaneously at the same frequency. Again these wavenumber results are not 
comprehensive since the parametric excitation and the cubic response have not been 

examined in this example. 
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Table 2.4.2 
Wavenumber and Frequency Responses, Two Modes 

Frequency Amplitude Proportionality Wave Response 

com 
Am 

m Linear Response 

con Linear Response 

2com ^(|)2|m2SmCOS(|ta(^AfJ + 

n2[((fJ+§i4Vos*m 

-—2-Am8nCos<t)n J 

m Geometric Imperfection 

2con 

V at J + dt2 Am 8nCos<()n 

3 Am r   s 
3t2 

An Smcosflto 

Geometric Imperfection 

2com 

4  W Am
2 

Breathing Mode 

2con "iQdv 
Breathing Mode 
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SECTION 3 
EXPERIMENTAL INVESTIGATION 

3.1      EXPERIMENTAL SET-UP AND CALIBRATION 

As in all investigations, the analytical work can be truly verified only by an experi- 

mental investigation. The driving force behind the experimental investigation of 

nonlinear vibrations of circular rings is to better understand the various phenomena 

previously discussed. These phenomena include the usefulness of higher order spectral 

signal processing in investigating nonlinear vibrations, the effects of geometric 
imperfections on the wave response of the circular rings, and the presence of nonlinear 

wavenumber interactions. 

The basic experimental set-up for the investigation of the nonlinear response of 

circular rings is shown in Fig. 3.1.1. All of the rings were composed of mild steel ASTM 
1018 with the following assumed properties: 

E = Young's modulus   = 30xl06psi 

P = weight density       = 0.283 lb/in3 
V = Poisson's ratio        = 0.3 

The input to the rings is accomplished via a thin 14 gauge steel wire held in high tension 
and attached to a point on the ring through a piezoelectric force gauge. The steel wire 
was excited by an electrodynamic shaker that was rigidly attached to it through a thin 

wire stinger. Thus the input system excited the interior of the ring at approximately a 

single circumferential point, y0, which could be modeled analytically as a delta function, 

^(yo). 

The displacement of the ring was measured with two noncontacting, inductance- 
type proximity probes. Both probes were located on the exterior surface of the ring with 

a fixed probe located at the input position directly opposite the force gauge input 
attachment point and an external probe that was free to rotate to any circumferential 
position about the ring. The probes were calibrated against the exterior surface of the 
ring so that material properties and curvature of the ring are accounted for. The 
calibration curves are shown in Appendix C. The linear displacement range of the probes 

is conservatively estimated to be 0.04 inches for both probes. The fixed probe was 

determined to have a sensitivity of 28.2—, while the external probe had a sensitivity of 
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27.6 —. During the experiment, the mean distance of the probes from the ring surface 
was monitored. This was done to ensure that the ring was near the midpoint of the linear 
range of the probes and thus guaranteed that the full linear range of the probes was 

utilized. 

Free-Moving 
Proximity 

Probe 
Fixed Position 

Proximity Probe 

Electrodynamic 
Shaker 

Fiqure 3.1.1 
Set-Up of Pnysical Apparatus 

AS-94-1147 

The instrumentation used during the experiment is shown in Fig. 3.1.2. There are 
four major groups into which the instrumentation and experimental set-up can be divided. 

The input instrumentation group is used to produce the signal used to drive the 
electrodynamic shaker. This input system was capable of generating signals for which 
second and higher harmonic components were attenuated at least 60 dB. The input signal 
was monitored with an AC voltmeter as well as recorded by the data acquisition system. 
The electrodynamic shaker, force gauge, proximity probes, and the ring apparatus itself 
make up the hardware group (see Fig. 3.1.1). 
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The force gauge and proximity probe signals were processed through the output 

instrumentation group, which amplified and filtered the signals. The filters consisted of 

high pass filters to reduce some of the low frequency noise and low pass analog filters to 

prevent aliasing. The cut-off frequencies as well as the amplification values were all 

controllable. 

Finally the input, force gauge, and proximity probe signals were digitized and 
analyzed by a data acquisition and analysis system consisting of a Concurrent 6600 and a 

Digital VAX workstation. The Concurrent contained 16-bit data acquisition boards and 

real-time data analysis software for continual storage and monitoring of the data. The 

Concurrent was capable of calculating the power spectrum as well as the bispectrum (or 

bicoherency) of all the signals in real-time and displaying a single signal in a grayscale 
waterfall display. 

The VAX was used to analyze the data in more detail after storage and thus was 
not used for real-time analysis. The system contained software that could calculate the 
power spectrum, bispectrum and bicoherency, spectral correlation, and cross-spectra of 
each of these. A description of the actual signal processing techniques will be mentioned 
as appropriate in describing the experimental results. 

3.2     HIGHER ORDER SPECTRAL RESULTS 

Some experimental results obtained from the nonlinear vibration studies of circular 

rings indicate a few of the interesting issues in the observability of power spectral and 

bicoherence vibration signatures. The single mode displacement response of a circular 
ring was estimated to be of the form 

2 
w(y,t) = An(t) cos^ - ^ [A2

n(t) + 2An(t)8nCos<])n]   , 

as shown previously (see Eq. 2.3.27). If the ring is excited by a single frequency, the 
dominant wavenumber of the response will be that wavenumber having natural frequency 

closest to the driving frequency. This assumes that all adjacent natural frequencies are 
approximately equally damped, as would be expected for a simple circular ring. The 
natural frequencies of four circular rings are listed in Appendix D. 
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For instance, the 0.073 inch thick circular ring is driven at a frequency of 
199.22 Hz. An examination of the natural frequency information for this ring in 
Appendix D reveals that the n=3 wavenumber has the closest natural frequency at 
218.8 Hz. Thus the dominant spatial wave response should be a second harmonic 
flexural mode corresponding to the n=3 wavenumber (see Fig. B.3b of Appendix B). A 
plot of the experimentally determined wavenumber response at the driving frequency 
shown in relative dB amplitude is shown in Fig. 3.2.1. Recalling that the dB scale is an 
absolute value scale, the n=3 wavenumber response can be clearly seen. The 
wavenumber response of the second harmonic of the driving frequency may have a more 
complex response as described in the analytical development of Section 2. The spatial 
wavenumber response of the circular ring is a topic that will be addressed in more detail 

in subsection 3.3. 
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Wavenumber Response of 0.073 Inch Thick Ring at 

Driving Frequency (199.22 Hz) 
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As an example of the usefulness of higher order signal processing, the 0.073 inch 
thick circular ring was driven by a voltage having a power spectral signature going into 
the electrodynamic shaker as shown in Fig. 3.2.2. The signal is extremely clean in that 
there is no evidence, at least in the power spectrum, of any nonlinearities such as 

harmonic or subharmonic frequencies. The transfer function of an electrodynamic shaker 
has been shown to be inherently cubic in nature (Ref. 47). As expected, then, the power 
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spectrum of the measured force gauge output of the electrodynamic shaker contains 
strong cubic spectral lines at frequencies three and six times the fundamental frequency 

(see Fig. 3.2.3). The bicoherency, however, will not detect cubic nonlinearities and thus 

should be null. As shown in Fig. 3.2.4, the bicoherence of electrodynamic shaker output 
indicates the presence of no significant quadratic nonlinearities or parametric interactions 

excluding the background noise peak. 

•a. 

-10.0 

-17.5 

-25.0 

-32.5 

-40.0 

g>   -47.5 

0.0 750.0 2250.0 3000.0 1500.0 

Frequency (Hz) 

Figure 3.2.2 
Power Spectrum of Voltage Input to Electromagnetic Shaker 
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Using the theoretical significance levels of Table 1.3.1, the 95% significance 

bicoherence amplitude is bxx
2(fhh) > 0.24 for this case since there were 50 records. The 

99% significance level is 0.30. The point shown on the autobicoherence of the force 

gauge has an amplitude equal to the 99% significance level but occurs at frequencies of 
445 Hz and two times this frequency. These frequencies are not related to the force 
gauge or the ring system, and thus this autobicoherence point should be considered due to 

some extraneous noise source. 
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Figure 3.2.4 
Auto Bicoherence of Force Gauge Measurement 
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The displacement of the circular ring, as measured with a single proximity probe, 

appears to respond in a purely linear fashion to the input of the fundamental frequency 

(Fig. 3.2.5). Only the fundamental frequency is observable in the power spectrum. Even 

the cubic harmonics present in the force gauge measurements are absent in the response 

spectrum. The conclusion from examining solely the input and output power spectrums 
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could be that the ring is a linear system and does not appear to respond in a quadratically 

nonlinear fashion at all. 
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Figure 3.2.5 
Power Spectrum of Ring Displacement Response 
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However, the response is not purely linear. The bicoherency of the ring 

displacement (Fig. 3.2.6) has a significant response at the (fi, fi, fi + fi) location where 

fl is the fundamental frequency of excitation (199.22 Hz). The bicoherency signature 

indicates that there is a ring response at the f i + f i == 398.44 Hz frequency even though 

there is no evidence for this frequency present in the power spectral signatures. Thus, 

there is evidence that the ring is acting as a quadratically nonlinear system, this 

nonlinearity being clearly evident only in the output bicoherency. The input bicoherency 

signature being null indicates an insignificant quadratic element in the input. 

Of course, the quadratic nature of the circular ring can be determined through 
analytical means as done in Section 2. However, these results provide evidence for the 
utility of higher order signal processing in detection of nonlinear processes. Each signal 
processing tool has its limitations (e.g., the bicoherency cannot detect cubic 
nonlinearities), but the arsenal of the complete higher order spectral signatures can 

provide a wealth of information concerning the true order of the system under study. 
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Figure 3.2.6 
Auto Bicoherence of Ring Displacement Response 

3.3     GEOMETRIC IMPERFECTION RESUL TS AS-94-1153 

In order to understand the effects of geometric imperfections, the imperfections 
were first measured for each ring. Appendix E presents the detailed method and results 
from the geometric imperfection measurements. The measurements were made by a 
precision gauge deflection sensor with the rings mounted on a rotating platform. As 

shown in Appendix E, the imperfections are reasonably constant in the radial and axial 

directions; thus the assumption that the imperfections are only dependent upon the 
circumferential coordinate is justified. 

The effect that the geometric imperfections have on the ring geometry can be 
clearly seen in Fig. 3.3.1 and Fig. 3.3.2. In these figures the actual geometric 
imperfections for the 0.034 and 0.073 inch thick rings are exaggerated. In essence, these 
rings are not perfectly axisymmetric. The position and amplitude of the individual 

wavenumber components of the geometric imperfections are revealed in Appendix E. 

In Section 2, the effects of the geometric imperfections on the dynamic response 

were analytically investigated.   For a single mode input, Table 2.4.1 indicates the 
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expected results for the linear mode, the quadratic imperfection mode, the quadratic 

breathing mode, and the cubic mode. In this section the quadratic effects are 

experimentally investigated. 

270° «h» 90° 

180° 

Figure 3.3.1 
Exaggerated Geometric Imperfections for 0.034 Inch Thick Ring 

270° 

Figure 3.3.2 
Exaggerated Geometric Imperfections for 0.073 Inch Thick Ring 

AS-94-1154 
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From Section 2, the single mode solution was (see Eq. 2.3.29) 

w(y,t) = I Am cosf^V ^ (Am
2 + 28mAmcos<|>m) I (3.3.1) 

From the differential equation of motion and the assumed mode solution, the response 

was determined to have the following linear, quadratic, and cubic major components 

written in nondimensional form (see Table 2.4.1): 

*m linear frequency flexural mode (3.3.2) 

nrVlr 
2 [gT Smcos(|)m -zr^t quadratic frequency flexural mode       (3.3.3) 

X(RJA™2 quadratic breathing mode (3.3.4) 

m*/hf ffdAm 2 lRJ 113x H a
2« 
9x2 

Äm     cubic frequency flexural mode. 
JJ 

(3.3.5) 

Thus, the ring will vibrate flexurally at the fundamental, quadratic, and cubic frequencies 
in the shape of the m wavenumber. In addition, the quadratic frequency should be excited 
in the form of the breathing mode. 

A closer examination of the quadratic amplitude form (Eq. 3.3.3) reveals the 

dependency of the quadratic flexural response on cos<))m where <|>m is the geometric phase 
of the mth component of the geometric imperfections with respect to the input location. 
Two extremes of this phase are defined as 

cos<])m = 0 orthogonal input (3.3.6) 

COS(|)m = 1 affine input. (3.3.7) 

If the input position is located at a nodal point of a geometric imperfection component 

(i.e., the input and imperfection shape are out of phase with respect to each other), the 

input is considered orthogonal. If the input is located at A, physical description of these 
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two inputs is shown in Fig. 3.3.3. The orthogonal input will not excite the quadratic 

flexural mode while the affine input will. The experiment was designed to investigate 

this hypothesis. 

Affine Input 

Orthogonal 
ut 

Geometric Imperfection 
n = 3 Wavenumber 

Figure 3.3.3 
Affine and Orthogonal Inputs to Geometrically Imperfect Ring 

AS-94-1155 

The experiment was set up as described in subsection 3.1; however, the orientation 

of the ring in relation to the input frequency was not arbitrary. Using the geometric 
imperfection information as described in Appendix E, the ring was positioned so that 

there was either an affine or orthogonal input at the input frequency. For instance, if the 
input frequency was such that it linearly excited the m wavenumber, the ring was 
positioned so that the ring could be excited at a maximum of the imperfection for the 

affine input and at a zero crossing of the imperfection for the orthogonal input. 

To measure the wavenumber response at each frequency, the displacement 
response at 1 of 16 evenly spaced points around the circumference of the ring and at the 
fixed input location were taken simultaneously. In the frequency domain, the amplitude 
of the response at the input frequency and at its second harmonic (double frequency) were 
determined as well as the positive or negative phase relationship between the response 
and the input displacements. It should be noted that the sampling rate of the data 
acquisition system was set so that an exact number of fundamental cycles could be 
measured in 512 points so that leakage was minimized. This was confirmed by online 

monitoring of the power spectrum of the response signals. 
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As a first example, a 176 Hz input frequency was applied to the 0.034 inch ring at 
the 30.8 degree circumferential location. This circumferential location corresponds to an 
affine input at the fourth wavenumber component of the geometric imperfections of this 
ring. This can be seen by referring to Figs. E.1.5a and E.1.5b in Appendix E and Table 

3.3.1, which shows the wavenumbers, natural frequencies, and response frequencies that 
would be expected for this ring. In Table 3.3.1, the second column is the natural 

frequency of the wavenumber response as found in Appendix D. The third column lists 

the fundamental input frequency (176 Hz), the quadratic frequency response (352 Hz), 

and the cubic frequency response (528 Hz) with the wavenumber that has a natural 

frequency closest to the response frequency. 

Table 3.3.1 
Natural and Response Frequencies of the 0.034 Inch Ring 

Wavenumber Natural Frequency Response Frequency 

2 313 Hz 

3 93.8 Hz 

4 187.5 Hz 176 Hz 

5 313     Hz 352 Hz 

6 469     Hz 528 Hz 

7 640     Hz 

8 844     Hz 

The response amplitude of the 0.034 inch thick ring at the fundamental input 

frequency of 176 Hz as measured at 16 evenly spaced points about the circumference of 
the ring is shown in Fig. 3.3.4. Note that, as expected, the response clearly shows the 
character of the fourth wavenumber at the fundamental input frequency. The spatial 

response at the second harmonic (352 Hz) of the fundamental input frequency is shown in 
Fig. 3.3.5. The spatial response at this frequency is more complicated, and no dominant 
response wavenumber is apparent in this plotting domain. The spatial Fourier domain 
(i.e., the wavenumber domain) can be used to examine the content of the spatial 
wavenumbers at this second harmonic frequency. 
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Before discussing the results obtained using the wavenumber domain, the same 

spatial response plots will be shown for the corresponding orthogonal input case. The 
orthogonal input case was obtained by shifting the input circumferential position of the 
ring while maintaining the identical input signal (amplitude and frequency). Referring 
again to Figs. E.1.4a and E.1.4b, an orthogonal input with respect to the fourth 
component of the geometric imperfection occurs at a circumferential position of 8.3 
degrees. Note that, as would be expected, this position is 22.5 degrees or one-quarter of a 

wavelength from the affine input to the ring at 30.8 degrees. 

The spatial response at the fundamental frequency for the orthogonal case is shown 

in Fig. 3.3.6. Note again the dominant response characteristic of the fourth wavenumber. 

The spatial response of the second harmonic of the fundamental input frequency is shown 

in Fig. 3.3.7. As in the affine case, the dominant wavenumber response is not apparent. 

Fig. 3.3.8 is the overlaid spatial response plots at the fundamental 176 Hz 

frequency for the affine and orthogonal input cases. The response characteristics at the 
fundamental frequency for the two cases are nearly identical. The Fourier transform of 
the spatial response data was performed to calculate the wavenumber spectrum for the 
response data. (Recall that the Fourier transform of time series data produces a frequency 
spectrum while the Fourier transform of spatial data produces a wavenumber spectrum.) 
The overlaid wavenumber spectrum of the fundamental frequency response for the affine 
and orthogonal input conditions is shown in Fig. 3.3.9. As with the spatial response of 
Fig. 3.3.8, the wavenumber spectrum reveals the identical characteristics of the 
fundamental frequency response for the affine and orthogonal cases. 

Turning to the response of the second harmonic of the fundamental frequency, the 

overlaid spatial response plots in Fig. 3.3.10 are quite different. Shown in Fig. 3.3.11, the 

wavenumber spectrums of the affine and orthogonal inputs reveal the differences. As 
predicted by the analysis, the orthogonal input produces a response that has a minimal 
fourth wavenumber component. The affine response at the second harmonic frequency 
reveals that the fourth wavenumber component was excited. Recall that the only 
difference between the two wavenumber spectra is the input position. Again, the affine 
input aligns the input frequency with the geometric imperfection so that the imperfection 
produces a double frequency response at that wavenumber. 
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Figure 3.3.7 
F2 Frequency Orthogonal Amplitude Response 
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Figure 3.3.9 
F-j Frequency Affine and Orthogonal Wavenumber Spectrum 
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Figure 3.3.10 
F2 Frequency Affine and Orthogonal Amplitude Response 

0.034 inch ring I F2 = 352Hz I 0Ortho = 8.3° I 6affine = 30.8° 
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There is some fifth order component in Fig. 3.3.11, which is the linear response of 

the double frequency input to the system (see Table 3.3.1). Some double frequency input 
was allowed into the input signal to the ring so that the double frequency amplitude was 

above the background noise of the system. Without sufficient double frequency 
amplitude, it would not have been possible to determine the wavenumber response of the 
system. This corresponds to a two-mode solution of Section 2 in which two frequencies 
are input into the system. In this case the second frequency is double the first frequency. 
With the wavenumber spectrum, the linear response to this double frequency can be 

distinguished from the nonlinear quadratic response. 

Interestingly, the n=l wavenumber also increases dramatically with the affine 

input. This could be due to the wavenumber interaction, revealed in the analysis of 

Section 2, between the n=5 and n=4 double frequency wavenumber response. The 

difference between the fifth and fourth wavenumber is the n=l wavenumber. Thus, some 

evidence for nonlinear wavenumber interactions is present. 
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F2 Frequency Affine and Orthogonal Wavenumber Spectrum 
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Neither the affine nor orthogonal input conditions produced the level of response 
of the breathing mode (m=0 wavenumber) predicted for inextensional ring vibrations. 
The breathing mode response, in fact, should be the dominant response of the double 

frequency since it is proportional to 

4 [R)Am (see Eq. 3.3.4) 

while the geometric imperfection response is proportional to the smaller 

^^j5mcos(t)m^ (see Eq. 3.3.3) 

A quick comparison of these values for 

m=4, | = ^J = 0.0072 , and 8m = 0.1 
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shows that the breathing mode should respond at an amplitude 44 times greater than that 

of the geometric imperfection mode. It appears then, that the ring may not be responding 

inextensionally and that the breathing mode is not excited as expected in the double 

frequency. 

Similar results were obtained for a 199 Hz excitation of the 0.073 inch thick ring. 

Table 3.3.2 contains the wavenumber and frequency information for this ring. Note that a 

199 Hz input frequency excites the third wavenumber and that an input of the second 

harmonic at 398 Hz will excite the fourth wavenumber. For an affine input, the ring was 

positioned at 38.7 degrees, and for the orthogonal input, the ring was 30 degrees from 

that at 8.7 degrees (see Figs. E.2.4a and E.2.4b in Appendix E). 

Table 3.3.2 
Natural and Response Frequencies of the 0.073 Inch Ring 

Wavenumber Natural Frequency Response Frequency 

2 78.1 Hz 

3 219 Hz 199 Hz 

4 414 Hz 398 Hz 

5 664 Hz 597 Hz 

6 1011 Hz 

7 1328 Hz 

8 1914 Hz 

Figures 3.3.12 and 3.3.13 are the affine amplitude responses at the fundamental 
and second harmonic frequencies, respectively. Figures 3.3.14 and 3.3.15 are the similar 
plots except for the orthogonal case. Note that the input frequency response shows the 
dominant third wavenumber, while the second harmonic frequencies show no apparent 
dominant wavenumber response as was the case with the 0.034 inch thick ring. 

The overlaid amplitude responses for the affine and orthogonal cases at the input 
frequency, fi, appear very similar (see Fig. 3.3.16) as do the wavenumber spectrum for 
the two input cases (Fig. 3.3.17). The second harmonic response, f2, for the affine and 

orthogonal cases are very dissimilar in the amplitude response as shown in the overlaid 

plots in Fig. 3.3.18. This is confirmed in the wavenumber spectrum of the two inputs as 

shown in Fig. 3.3.19. 
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Examining the wavenumber response at the double frequency, it is again apparent 

that the affine input increases the double frequency response at the input wavenumber, in 
this case the n=3 wavenumber. The wavenumber response of the input n=3 wavenumber 

is increased by almost a factor of 2 by the affine input location. This increase is less than 
that seen for the 0.034 inch ring case, which was more than 4.5 times with the affine 

input. This decrease in geometric imperfection effect can be attributed to the smaller 
imperfection to thickness ratio (5m) and the smaller thickness to ring radius ratio (^) 

since the imperfection wavenumber response is proportional to both of these (see 
Eq. 3.3.3). 

In contrast to the 0.034 inch ring wavenumber response results, it is not clear in 
this case that there are nonlinear wavenumber interactions at the f2 frequency. However, 
the rigid body motion of the first wavenumber is again excited with the affine input. As 
with the 0.034 inch ring, the breathing mode response at the double frequency is not 
readily apparent. 

Thus, from the data for the 0.034 inch ring and the 0.073 inch ring, it is shown that 

the geometric imperfections create the double frequency flexural mode response at the 
wavenumber linearly excited by the input frequency. This was confirmed by comparison 
of the affine and orthogonal input locations to the circular ring. The predicted double 
frequency breathing mode, however, is not apparent and, thus, the inextensional response 
of the circular ring is brought into question. There is some evidence that the rigid body 
mode is excited and amplified with the affine input. 
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Figure 3.3.12 
Fi Frequency Affine Amplitude Response 

0.073 inch ring I Fi = 199 Hz I Gjnput = 38.7° 
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Figure 3.3.13 
F2 Frequency Affine Amplitude Response 

0.073 inch ring I Fi=199Hz I F2 = 398Hz I 9jnput = 38.7° 
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Figure 3.3.14 
Fi Frequency Orthogonal Amplitude Response 

0.073 inch ring I Fi = 198 Hz I 9jnput = 8.7° 
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Figure 3.3.15 
F2 Frequency Orthogonal Amplitude Response 

0.073 inch ring I Fi=199Hz I F2 = 398Hz I 8jnput = 8.7° 
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Figure 3.3.16 
Fi Frequency Affine and Orthogonal Amplitude Response 

0.073 inch ring I Fi=199Hz I e0rtho = 8.7° I 6affine = 38.7° 
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Fi Frequency Affine and Orthogonal Wavenumber Spectrum 
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Figure 3.3.18 
F2 Frequency Affine and Orthogonal Amplitude Response 

0.073 inch ring I F2 = 398Hz I e0rtho = 8.7° I 8affine = 38.7° 

- ■•- affine 

R
es

p
o

n
se

 A
m

p
lit

u
d

e 
(m

ill
i-

in
ch

es
) 

p
  

  
  
 p

  
  

  
 o

  
  

  
 o

  
  
  
 o

  
  
  
 c

 
b

  
  

  
 b

  
  
  
 b

  
  

  
 b

  
  
  
 b

  
  
  
 c

 
o

   
   

   
o

   
   

   
O

   
   

   
Q

   
   

   
o

   
   

   
c 

o
   

   
  o

   
   

  o
   

   
  S

   
   

  o
   

   
  c

 
3

   
   

   
  
-t

   
   

   
  K

3 
   

   
   

 C
O 

   
   

   
  4

* 
   

   
   

  O
l  

   
   

   
< 

I 
1 

I 
■ 

.1
.1
 

■ 
■ 

I 
I 

1 
I 

■ 
■ 

1 
1 

■ 
■ 

■ 
I 

1 
I 

■ 
I 

I 
1 

■ 
■ 

I 
I 

1    , 

1     « 
■       1 

1            1 
1 

1 
1 

I 
1 

• 
» » 

1       X orthogonal 

>           > 
1              1                  »    ' 

••'AS''   '•/ »/ A   / 
M  i 
f « 

( 
1 

)      1 
1 1        1        1        1 
2 3          4         5         6 

Wavenumber of Response 
7 1 i 

Figure 3.3.19 
F2 Frequency Affine and Orthogonal Wavenumber Spectrum 

0.073 inch ring I F2 = 398 Hz I e0rtho = 8.7° I Gaffine = 38.7° 

73 
AS-94-1164 



This page intentionally left blank. 

74 



SECTION 4 
CONCLUSIONS AND FINAL DISCUSSIONS 

4.1     CONCLUSIONS 

From the investigation of circular rings presented here, a number of interesting 
conclusions can be made as drawn from three major sections of this thesis, the analytical 
investigation, the experimental higher order investigation, and the geometric imperfection 
study. These will be addressed in turn. 

First, the analytical work of Section 2 revealed that the inextensional assumption of 
the ring vibration produced a nonlinearly generated double frequency breathing mode 
response. In addition, geometric imperfections can also produce a double frequency 
response. However, this is dependent on the relative position between the input force and 
geometric imperfection waveform, as well as the frequency of the excitation. Also, some 

evidence for the possibility of nonlinear wavenumber interactions was present in the 
analytical forms of the response equations. 

Second, the higher order spectral investigation has shown some of the utility of this 
signal processing tool. The bicoherence, in particular, is capable of revealing quadratic 
interactions in the response that are not readily apparent in the power spectrum of the 
response. The occurrence of a significant bicoherence response between the spectral line 
frequencies of the ring response confirms the existence of a quadratic nonlinear response 
in the structure. 

Third, the circular ring has proven to be an excellent structure for the investigation 
of the effect of geometric imperfections on the wave response of structures. As shown in 

Section 3, the geometric imperfections can produce a double frequency flexural response 

as predicted by the analysis. This double frequency response does not occur with the 
orthogonal forcing function input where the geometric imperfection is oriented 
orthogonally to the input spatial location. However, when the input is spatially affine or 
in phase with the geometric imperfection, the wavenumber of the fundamental response is 
significantly increased in the double frequency response. 

The other predicted double frequency response, the breathing mode, did not occur 

at higher magnitude levels with respect to the geometric imperfection response. Some 
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question then presents itself as to the validity of the inextensional assumption that gave 
rise to the breathing mode response in the analysis. Finally, some experimental evidence 
was obtained for the presence of nonlinear wavenumber interactions. 

4.2     UNANSWERED QUESTIONS AND FUTURE WORK 

The effects of nonlinearities on system response and the identification of those 

nonlinearities is an important structural dynamics problem. The circular ring has proven 

to be a useful structure, which is simple enough in its geometry to be investigated 

analytically and experimentally yet provides an avenue to allow the study of system 

nonlinearities. Many interesting features of the nonlinear ring problem have been 

investigated here, but many more questions remain. Fortunately, higher order signal 

processing provides an additional tool with which to study circular ring and other 

structures exhibiting nonlinearities. 

The affine input to the geometrically imperfect ring seems to amplify the rigid 
body mode. The acoustic radiation from this rigid body mode would be in the form of a 
dipole. The dipole is an efficient radiator, though not as efficient as the monopole of the 
breathing mode, and would be significant in the acoustic response of the circular ring. 

Some areas that remain to be investigated include 

• the influence of radial preloading on the nonlinear response of a structure 

• the nonlinear response of combination shell and ring structures common in 
aerospace and naval structures 

• the acoustic radiation of nonlinearly excited structures, both in terms of near 
field and far field effects 

• the transient response of nonlinear structures and the usefulness of higher order 
signal processing for the non-steady state problem 

• a final survey of the existence of the breathing mode phenomenon. 
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The question of the inextensional versus extensional vibration for structural bodies 

of revolution that have a closure compatibility condition is still not completely settled. 
The generation of breathing modes in bodies of revolution is an important phenomenon 
and a phenomenon that has not been entirely established as existing. The acoustic 
radiation of a body vibrating in a breathing mode can be quite significant since the 

structure is acting as an efficient monopole source. 

Some of these questions may be resolved with a more complete analytical analysis 

of the structural input to the ring. With a singular point input (a delta function), the 

continuity condition in shear force is not necessarily accurate. If the ring could be excited 

in a truly spatial fashion, the breathing mode phenomenon may be more present since the 

boundary conditions would be more precise, that is, there would be no discontinuity in 
shear. This type of loading may be most conveniently applied and most applicable to the 
acoustic radiation question if a ring or cylindrical shell were excited by (underwater) 

acoustic waves. 

In conclusion, the most important finding of this report is the experimental 

evidence for the geometric imperfection effect at the double frequency. Since geometric 
imperfections are ubiquitous, their effects in terms of nonlinear responses is significant. 
The rings used in this study were manufactured without the intention of creating 
geometric imperfections. The imperfections were indeed small and yet the results were 
still noticeable. In addition, the input amplitudes were small in nature and the input 
frequencies were not near natural resonances of the circular rings. Thus, the results are 
general in nature. 
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APPENDIXA 
NONLINEAR STRAIN DISPLACEMENT RELATIONS 

This appendix will be devoted to the nonlinear strain-displacement relation for the 
longitudinal circumferential strain term evv since this is the most important (and indeed 

the only) strain term in the development of the transverse vibrations of circular rings. 
The strain-displacement in cylindrical coordinates accurate to second-order has been 
developed by Novozhilov (Ref. 40, p. 192) and will be simply repeated here but in the 
notation of this paper: 

yy -(l+3/Rj(3y"+Rj+ 

1       r/3v'   w'>2    fdw'   yN2" 
2(l+z/R)2|j3y    Rj     1^7" RJ. (A.1) 

The primes of v and w indicate that these displacements are general and not necessarily 
those of the mid-plane surface of the ring. 

Geometric imperfections can now be included in the strain-displacement 
expressions. The geometric imperfections will be assumed to exist in a residual strain- 
free condition, which can be expressed as 

eyy = eyy (v\ w' + w) - eyy (0, w)    , (A.2) 

where w is the geometric imperfection static displacement. The geometric imperfections 
will be assumed to be on the order of, or less than, the radial displacement, 0[w] < 0[w]. 
Expanded, using Eq. A.l, the nonlinear strain-displacement relation with geometric 
imperfections becomes 
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2(i+^R)2Ll¥+Rj+l'9y""Rj + 

. /dv"   w'w    0 f3w'  v\9w 
2[äy"+RjR + 2[äy~"Rj9y. 

(A.3) 

This expression (Eq. A.3) is accurate to second order. 

It is now necessary to relate the displacements v'(y,z,t) and w'(y,z,t) to 
displacements of the mid-surface of the ring. As required by Kirchoffs hypothesis that 
normals to the undeformed middle surface remain straight and normal to the deformed 
middle surface and undergo no extension, the tangential and radial displacements are 
approximated by the following linear relationships (Ref. 39, p. 6-7): 

v'(y,z,t)  = v(y,t) + z 0(y,t) 

w'(y,z,t) = w(y,t)   , 

(A. 4a) 

(A.4b) 

where 0 is the rotation of the normal to the middle surface during deformation as shown 
in Fig. A.l. 

Deformed Position 

Undeformed Position 

Figure A.1 
Definition of Angle 0 for Deformation of Ring 
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The angle 6 can be determined by examining the shear strain: 

6yz —' 
dv1    /   1    \[{dv'   w\dv'    fdv/'   vV.    8w'\ (A.5) 

Kirchoffs hypothesis requires that eyz = 0.    By substituting Eq. A.4 with Eq. A.5 and 

solving the z° power resulting equation, 6 can be determined as 

8 = <dw   v" /dw   v\ ,   /dv    w\ /dw   v^\ =-[d7-RjL1-(d7+Rjss-[dy-Rj 
/9w   v" (A.6) 

The angle 9 enters into the strain-displacement relation at the second-order level; thus it 
is sufficient to linearize this equation as shown. 

Thus, the strain-displacement relation to second order for any point on the ring 
becomes 

1 [3v   w   z /nd2w  dvN 1 1      dv    w   z/pdfw   dy\ l 
yy - i+z/R|_dy + R"Rrdy2 "3yjl + 2(i+z/R)2 

/3w   v\2 , „ /dv , w\w , _ /8w   v\dw 
(ay-Rj+2[d7+RjR+2[d7-Rjd7 

"/dv    w>2 

(A.7) 

This expression for the strain-displacement relationship can be simplified through 
the application of some relative magnitude assumptions. First, the ring is considered thin 

h z so that jr « 1 and thus =r « 1 as well. Second, due to the assumption of small tangential 
and radial displacements, the expression can be simplified by 

dv        1 /dvS2       .   w        1 /w\2 
37 ^ 2{djJ  ** R » 2{RJ   • (A.8a,b) 

For inextensional vibrations, the tangential displacements will be less than the radial 
displacements (see note A.l below) thus similar to Eq. A. 8b: 

w 
R-^2 m- (A.8c) 
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Since the geometric imperfections will be small, it is necessary to retain only the largest 
  3w   w 

term containing w. The criteria used are that w > v and 3— > g- (see note A.2 below). 
Expanding Eq. A.7 with the application of these assumptions yields 

9v , w   z /V,d2w   3v\ , 3v w , 3w v , 1 /3w^ , 9w9w ,. m 
%=^ + R-R[Räy2--^J+^R+^y"R + 2[äy"J + äy"äy"    • (A-9) 

The arguments of small radial displacements and tangential displacements smaller than 

radial displacements indicate that « (T£7 ] > 5^7 jT anc* similarly ~ j ^") > 7£7 R • 
Thus, the simplest first-order nonlinear strain-displacement relation with geometric 

imperfections is 

3v , w    z /n32w  dv\ ,  1 /3w>2 , 3w3w ,. , m 

% = ^ + R-R(V~"^J   H^I   3^  • <A-10> 
This form of the strain-displacement relation exhibits the basic properties of the breathing 
mode for inextensional vibrations and the quadratic effects of geometric imperfections, as 
shown in Section 2. 

Note A.1: Relative magnitudes of v and w (Ref. 15, p. 459). 

Examine the linear strain-displacement relation for eyy. If the vibrations are 
inextensional, this relation is set to zero: 

_ dv      w _ n 
eyy " dy + R _ u   • 

If a single mode of flexural vibration for w is assumed to be 

w = An(t) cosT^j 

then 

3v       w _   An(t)    yny\ 
dy       K R   C0\R) 
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Solving for v by integration yields 

An(t) . /ny> T*ffl 

Thus, in the linear limit, w is larger in magnitude than v by a factor of the circumferential 

wavenumber n. It is the assumption that all tangential displacements and their derivatives 

may be neglected in the presence of radial displacements that impose the requirement that 
the circumferential wavenumber must be large. 

Note A.2: Relative magnitudes of % and^. 

Examine a single component of a spatial Fourier series expansion of the geometric 
imperfections, which can be written as 

w = Bncos/^j   . 

The derivative of this with respect to y is 

dw        nBn . rtiy\ 
^ = -1TS1I(RJ • 

Thus, it can be seen that ^- is larger than ^ by a factor of the circumferential 
wavenumber n. 
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APPENDIX B 
CIRCULAR RING VIBRA TION MODE DESCRIPTIONS 

This appendix is devoted to the description of the various mode shapes of the 
transverse vibrations of circular rings. The radial displacement is approximated by a 
Fourier series expansion as 

oo 

w(y,t) = X [An(t)cosßf)+Bn(t) sinful    , (B.l) 

where An(t) and Bn(t) are dynamic amplitude terms and n corresponds to the 
circumferential wavenumber. This expression can be divided into three parts 
representing three types of displacement: 

w(y,t) = [A0(t)] + [Ai(t) cosß^W Bi(t) sn/|] 

oo 

X [An(t)cos^+Bn(t)sin^|     . (B.2) 

The first square bracket term is for n=0 and corresponds to a breathing mode with 
amplitude Ao(t). This type of vibration is shown in Fig. B.l. The second square bracket 
term is for n=l and corresponds to a rigid body motion. This is shown in Fig. B.2. The 
third square bracket represents the flexural modes. 

The first flexural mode (see Figs. 3a-d) is for n=2, and thus this mode is 
considered the fundamental mode of vibration (not the n=0 breathing mode). The modes 
for n>2 are spatial harmonics of the fundamental mode. The convention used here is that 

n=3 will be labeled the second harmonic (the fundamental n=2 mode considered the first 
harmonic), n=4 the third harmonic, etc. Two notes are important: 

• The harmonic name, as indicated, does not correspond to the circumferential 
wavenumber directly but to the (n+1) wavenumber. Table B.l must be kept in 
mind when analyzing and discussing circular ring vibrations. 
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Table B.1 
Description of Circular Ring Modes 

Wavenumber (n) Type of Mode Name of Mode 

0 Breathing Breathing Mode 

1 Rigid Body Rigid Body Mode 

2 Flexural Fundamental 

3 Flexural Second Harmonic 

4 Flexural Third Harmonic 

5 Flexural Fourth Harmonic 

n>6 Flexural (n-1)tn Harmonic 

The discussion of mode harmonics refers only to spatial harmonics. There is 

no reference whatsoever to frequency harmonics. It is not necessary that higher 
circumferential modes of vibration correspond to higher frequencies of 
vibration. A simple example is that the natural frequency of vibration of the 
breathing mode (n=0) is generally higher than that of the fundamental mode 
(n=2). As shown in the main text, a single temporal frequency can contain 
components of more than one spatial wavenumber response. 

Figure B.1 
Breathing Mode (n = 0) 
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Figure B.2 
Rigid Body Mode (n = 1) 

Figure B.3a 
Fundamental Fiexural Mode (n = 2) 

AS-94-1167 
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Figure B.3b 
Second Harmonic Flexural Mode (n = 3) 

** *' •*....••.** 

Figure B.3c 
Third Harmonic Flexural Mode (n = 4) 
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Figure B.3d 
Fourth Harmonic Flexural Mode (n = 5) 

AS-94-1169 
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APPENDIX C 
PROXIMETER PROBE CALIBRATION CURVES 

e 
> 
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Figure C.1 
External Proximeter Probe Calibration Data 
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Figure C.2 
Linear Range of External Proximeter Probe 
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Sensitivity 28.2 V/in. 
Linear Range 0.024-0.064 in. 
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Figure C.3 
Fixed Proximeter Probe Calibration Data 
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Figure C.4 
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APPENDIX D 

CIRCULAR RING NATURAL FREQUENCIES 

This appendix presents the experimentally determined natural frequencies for four 
circular rings. The natural frequencies were measured using the described experimental 
setup except that the input to the rings was an impact from a metal hammer. The impact 
excites all of the natural frequencies which are detected from their increased power 
spectral response amplitudes. Accuracy is predicted to be within 2%. 

Table D.1 
Natural Frequencies of Rings 

Wavenumber 

n 

Frequency 

0.034 Ring 

Frequency 

0.073 Ring 

Frequency 

0.102 Ring 

Frequency 

0.275 Ring 

0 7030 Hz 

2 31.3 Hz 78.1 Hz 117.2 Hz 312.5 

3 93.8 218.8 312.5 898.4 

4 187.5 414.1 625.0 1758 

5 312.5 664.1 976.6 2812 

6 468.8 1012 1445 4062 

7 640.6 1328 1992 5585 

8 843.8 1914 2617 7305 

9 1062.5 2422 3359 9219 

10 1328 2969 4101 11330 

11 1609 3594 5000 13590 

12 1922 4258 5977 

13 2250 5039 

14 2625 5859 

15 3016 

16 3438 

17 3875 
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Figure D.1 
0.034 Inch Thick Ring Natural Frequencies 
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0.073 Inch Thick Ring Natural Frequencies 
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APPENDIXE 
CIRCULAR RING GEOMETRIC IMPERFECTION MEASUREMENTS 

This appendix presents the measured geometric imperfections of three thin circular 

rings. The imperfections were determined from a minimum of two averages of the static 

displacement of both the interior and exterior surfaces of the ring. The rigid body and 

mean value components of the measurements are removed since they do not contribute to 

the static geometric imperfections. 

The interior and exterior imperfection shapes are shown in Figs. 1.1a and Lib, 
2.1a and 2.1b, and 3.1a and 3.1b, respectively. Note that for all three ring thicknesses, 

the variation across the ring thickness as determined by comparing the interior and 
exterior measurements is not significant and thus the imperfection shapes are nearly 
identical for both the interior and exterior surfaces. Thus, the imperfection can be 
developed as a simplified function of the circumferential coordinate, y, only. 

Taking the Fourier series of the imperfection waveshape of the interior and exterior 
surfaces yields the wavenumber component amplitudes of the geometric imperfection 
shapes. These component amplitudes for the three rings interior and exterior surfaces are 
shown in Figs. 1.2a and 1.2b, 2.2a and 2.2b, and 3.2a and 3.2b, respectively. Note again 
that the wavenumber amplitudes reveals the similarity between the interior and exterior 
imperfection shapes. Also, the majority of the imperfection waveshape for all three rings 
is made up of wavenumbers less than 4. 

Since most of the imperfection can be described with the second through fourth 
wavenumbers, these three geometric imperfection wavenumber components were 

determined. (Again, the n=0 mean value and n=l rigid body components are not related 
to the geometric imperfections so the imperfection components begin with the n=2 
wavenumber.) These are shown in Figs. 3a, .3b, .4a, .4b, .5a, and .5b for all three ring 
thicknesses. With the notable exceptions of the n=4 component of the 0.073 inch thick 
ring and the n=2 and n=4 components of the 0.102 inch thick ring, the amplitude and 

phase of the interior and exterior wavenumber components are nearly identical, indicating 

little radial variation of the geometric imperfection shape as has been assumed in the 
analytical analysis. The n=4 components of the 0.073 and 0.102 inch thick rings are 

small in amplitude, and thus the amplitude and phase information would be expected to 
be less accurate due to the inherent noise effects of the measurement system. These n=4 
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components contribute little to the imperfection shape and therefore should be neglected 
(i.e., considered to be zero). The discrepancy in the n=2 component of the 0.102 inch 

thick ring would indicate some small radial variation in this component of the geometric 

imperfection since it represents approximately one-fourth of the imperfection amplitude. 

The effects of such a variation in the radial imperfection shape have not been considered 

in this thesis. 

A survey of the variation in ring imperfections as a function of axial position was 
also made. This was accomplished by making three measurements in the axial direction 

at the one-fourth, one-half, and three-fourths height positions. The difference between 

the one-fourth and three-fourths height positions with respect to the one-half position for 

the interior and exterior surfaces are plotted in Figs. 1.6a and b, 2.6a and b, and 3.6a and 

b, respectively. The axial variation was determined to be less than a maximum of 3 mils 

for the overall imperfection shape and decreased with increasing ring thickness. The 

maximum axial variation occurs where there is surface rusting and scarring, which is 

more of a surface variation than a geometric imperfection. Thus, the axial variation is 
small enough that the axial coordinate can be neglected even in terms of the geometric 
imperfections and the reduced dimensionality of the circular ring problem seems to be 

justified. 
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Figure E.1.1a 
0.034 Inch Thick Ring Interior Imperfection Shape 
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Figure E.1.1b 
0.034 Inch Thick Ring Exterior Imperfection Shape 
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Figure E.1.3a 
0.034 Inch Thick Ring Interior Wavenumber 2 Component 
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Figure E.1.3b 
0.034 Inch Thick Ring Exterior Wavenumber 2 Component 
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Figure E.1.4a 
0.034 Inch Thick Ring Interior Wavenumber 3 Component 
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Figure E.1.4b 
0.034 Inch Thick Ring Exterior Wavenumber 3 Component 
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Figure E.1.5a 
0.034 Inch Thick Ring Interior Wavenumber 4 Component 
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Figure E.1.6a 
0.034 Inch Thick Ring Interior Axial Imperfection Variation 
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Figure E.1.6b 
0.034 Inch Thick Ring Exterior Axial Imperfection Variation 
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Figure E.2.1a 
0.073 Inch Thick Ring Interior Imperfection Shape 
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Figure E.2.1 b 
0.073 Inch Thick Ring Exterior Imperfection Shape 
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Figure E.2.3a 
0.073 Inch Thick Ring Interior Wavenumber 2 Component 
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Figure E.2.3b 
0.073 Inch Thick Ring Exterior Wavenumber 2 Component 
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Figure E.2.4a 
0.073 Inch Thick Ring Interior Wavenumber 3 Component 
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Figure E.2.4b 
0.073 Inch Thick Ring Exterior Wavenumber 3 Component 
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Figure E.2.5a 
0.073 Inch Thick Ring Interior Wavenumber 4 Component 

90     135     180    225    270    315    360 
Location on Ring (degrees) 

Figure E.2.5b 
0.073 Inch Thick Ring Exterior Wavenumber 4 Component 
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Figure E.3.1a 
0.102 Inch Thick Ring Interior Imperfection Shape 
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Figure E.3.1b 
0.102 Inch Thick Ring Exterior Imperfection Shape 
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Figure E.3.3a 
0.102 Inch Thick Ring interior Wavenumber 2 Component 
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Figure E.3.3b 
0.102 Inch Thick Ring Exterior Wavenumber 2 Component 

AS-94-1188 

113 



XI 

.s 

I o 
< 
c 
•ö -2 
o 

t-4 

;    A   -A- A 
WÜ ft/ u\f\t ;\r y -y- 
0       45      90     135     180    225    270    315    360 

Location on Ring (degrees) 

Figure E.3.4a 
0.102 Inch Thick Ring Interior Wavenumber 3 Component 

0       45 90     135     180    225    270    315    360 
Location on Ring (degrees) 

Figure E.3.4b 
0.102 Inch Thick Ring Exterior Wavenumber 3 Component 

AS-94-1189 

114 



0       45      90     135     180    225    270    315    360 
Location on Ring (degrees) 

Figure E.3.5a 
0.102 Inch Thick Ring Interior Wavenumber 4 Component 

V 0.3- 
.8 o 
.5  0.2- 

0.1. 

3 0- 

cs 
o 
o 

.«^ 
8 

-0.1. 

-0.2. 

-0.3- 

\ 

\ 

\ 

\ 

- 
\ 

Ill 1  I   1 

0       45      90     135     180    225    270    315    360 
Location on Ring (degrees) 

Figure E.3.5b 
0.102 Inch Thick Ring Exterior Wavenumber 4 Component 

AS-94-1190 

115 



0       45      90     135     180    225     270    315     360 
Location on Ring (degrees) 

Figure E.3.6a 
0.102 Inch Thick Ring Interior Axial Imperfection Variation 
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